Microstructural Characterization of Large Area C60 Films Obtained by Conventional Microwave Oven Irradiation

Abstract

In the present work the synthesis of C60 produced in a conventional microwave oven from the decomposition of camphor resin is reported. The polycrystalline structure of the sample was determined by X-Ray Diffraction (XRD), the sample showed several phases, the main phase corresponds to fullerene C60 ordered in a Face-Centered Cubic structure (FCC), with two more structures: one orthorhombic system and the other the monoclinic system coexisting also with graphite 2H phase. It was observed in a Scanning Electron Microscopy (SEM), that the sample formed thin films of stacked carbon. Whereas in a High Resolution Transmission Electron Microscopy (HRTEM), measurements in Bright Field mode revealed that the main phase of the material is C60 ordered in FCC structure and the elemental composition and atomic bonding state can be determined by analyzing the energy with the electron microscope by Elesctron Energy- Loss Spectroscopy (EELS), technique allowed confirm all the phase C60 established with XRD observations.

Share and Cite:

J. Martínez-Reyes, L. Barriga-Arceo, L. Rendón-Vazquez, R. Martínez-Guerrero, N. Romero-Partida, E. Palacios-González, V. Garibay-Febles and J. Ortiz-López, "Microstructural Characterization of Large Area C60 Films Obtained by Conventional Microwave Oven Irradiation," World Journal of Nano Science and Engineering, Vol. 2 No. 4, 2012, pp. 213-218. doi: 10.4236/wjnse.2012.24029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. M. Mominuzzaman, M. Rusop, T. Soa, T. Jimbo and M. Umeno, “Rearrangements of Hybridized Bonds in Nitrogen Incorporated Camphoric Carbon Thin Films Deposited by Pulsed Laser Ablation,” The 5th International Conference on Mechanical Engineering ICME 2003, Dhaka, 26-28 December 2003, pp. 1-4.
[2] C. Chen and Z. Lou, “Formation of C60 by Reduction of CO2,” The Journal of Supercritical Fluids, Vol. 50, No. 1, 2009, pp. 42-45. doi:10.1016/j.supflu.2009.04.008
[3] A. del V. Turina, M. V. Nolan, J. A. Zygadlo and M. A. Perillo, “Natural Terpenes: Self-Assembly and Membrane Partitioning,” Biophysical Chemistry, Vol. 122, No. 2, 2006, pp. 101-113.
[4] P. Louvieris, A. Gregoriades and W. Garn, “Assessing Critical Success Factors for Military Decision Support,” Expert Systems with Applications, Vol. 37, No. 12, 2010, pp. 8229-8241.
[5] A. H. Jayatissa, T. Gupta and A. D. Pandya, “Heating Effect on C60 Films during Microfabrication: Structure and Electrical Properties,” Carbon, Vol. 42, No. 5-6, 2004, pp. 1143-1146. doi:10.1016/j.carbon.2003.12.058
[6] T. D. Burchell, “Carbon Materials for Advanced Technologies,” Pergamon Press, New York, 1999, p. 85.
[7] A. G. Dall’ Asén, M. Verdier, H. Huck, E. B. Halac and M. Reinoso, “Nanoidentation on Carbon Thin Films Obtained from a C60 Ion Beam,” Applied Surface Science, Vol. 252, No. 22, 2006, pp. 8005-8009. doi:10.1016/j.apsusc.2005.10.008
[8] R. F. Xiao, “Growth of Large Fullerene C60 Crystals and Highly Oriented Thin Films by Physical Vapor Transport,” Journal of Crystal Growth, Vol. 174, No. 1-4, 1997, pp. 821-827. doi:10.1016/S0022-0248(97)00051-1
[9] P. Milani, M. Ferretti, P. Piser, C. E. Bottani, A. Ferrari, A. Li Bassi, G. Guizzetti and M. Patrini, “Synthesis and Characterization of Cluster-Assembled Carbon Thin Films,” Journal of Applied Physics, Vol. 82, No. 11, 1997, pp. 5793-5798. doi:10.1063/1.366446
[10] M. Rusop, X. M. Tian, T. Kinugawa, T. Soga, T. Jimbo and M. Umeno, “Preparation and Characterization of Boron-Incorporated Amorphous Carbon Films from a Natural Source of Camphoric Carbon as a Precursor Material,” Applied Surface Science, Vol. 252, No. 5, 2005, pp. 1693- 1703. doi:10.1016/j.apsusc.2005.03.215
[11] T. Yim and S. Jones, “Growth Dynamics of C60 Thin Films: Effect of Molecular Structure,” Applied Physics Letters, Vol. 94, No. 2, 2009, pp. 021911-021913. doi:10.1063/1.3072805
[12] B. D. Steinberg, E. A. Jackson, A. S. Filatov, A. Wakamiya, M. A. Petrukhina and L. T. Scott, “Aromatic ?- Systems More Curved than C60. The Complete Family of All Indenocorannulenes Synthesized by Iterative Microwave-Assisted Intramolecular Arylations,” Journal of the American Chemical Society, Vol. 131, No. 30, 2009, pp. 10537-10545. doi:10.1021/ja9031852
[13] A. Lew, P. O. Krutzik, M. E. Hart and A. R. Chamberlin, “Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry,” Journal of Combinatorial Chemistry, Vol. 4, No. 2, 2002, pp. 95-105. doi:10.1021/cc010048o
[14] S. M. Mominuzzaman, T. Soga, T. Jimbo and M. Umeno, “Camphoric Carbon Soot: A New Target for Deposition of Diamond-Like Carbon Films by Pulsed Laser Ablation,” Thin Solid Films, Vol. 376, No. 1-2, 2000, pp. 1-4. doi:10.1016/S0040-6090(00)01189-5
[15] A. I. Oreshkin, R. Z. Bakhtizin, J. T. Sadowski and T. Sakurai, “Epitaxial Growth of C60 Thin Films on the Bi (0001)/Si(111) Surface,” Bulletin of the Russian Academy of Sciences: Physics, Vol. 73, No. 7, 2009, pp. 883- 885. doi:10.3103/S1062873809070065
[16] M. Rusop, T. Kinugawa, T. Soga and T. Jimbo, “Preparation and Microstructure Properties of Tetrahedral Amorphous Carbon Films by Pulsed Laser Deposition Using Camphoric Carbon Target,” Diamond and Related Materials, Vol. 13, No. 11-12, 2004, pp. 2174-2179. doi:10.1016/j.diamond.2004.06.035
[17] M. Kumar and Y. Ando, “Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology,” Journal of Physics: Conference Series, Vol. 61, 2007, pp. 643- 646. doi:10.1088/1742-6596/61/1/129
[18] M. Kumar, T. Okazaki, M. Hiramatsu and Y. Ando, “The Use of Camphor-Grown Carbon Nanotube Array as an Efficient Field Emitter,” Carbon, Vol. 45, No. 9, 2007, pp. 1899-1904. doi:10.1016/j.carbon.2007.04.023
[19] P. R. Somani, S. P. Somani and M. Umeno, “Planer Nano- Graphenes from Camphor by CVD,” Chemical Physics Letters, Vol. 430, No. 1-3, 2006, pp. 56-59. doi:10.1016/j.cplett.2006.06.081
[20] S. M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo and M. Umeno, “Nitrogen Doping in Camphoric Carbon Films and Its Application to Photovoltaic Cell,” Solar Energy Materials and Solar Cells, Vol. 90, No. 18-19, 2006, pp. 3238-3243. doi:10.1016/j.solmat.2006.06.037
[21] C. O. Kappe and D. Dallinger, “Controlled Microwave Heating in Modern Organic Synthesis: Highlights from the 2004-2008 Literature,” Molecular Diversity, Vol. 13, No. 2, 2009, pp. 71-193. doi:10.1007/s11030-009-9138-8
[22] K. J. Rao, B. Vaidhyanathan, M. Ganguli and P. A. Ramakrishnan, “Synthesis of Inorganic Solids Using Microwaves,” Chemistry of Materials, Vol. 11, No. 4, 1999, pp. 882-895. doi:10.1021/cm9803859
[23] Committee on Microwave Processing of Materials: An Emerging Industrial Technology, Commission on Engineering and Technical Systems, National Research Council, “Microwave Processing of Materials,” Publication NMAB- 473, National Academy Press, Washington DC, 1994, pp. 1-149.
[24] A. Stadler, B. H. Yousefi, D. Dallinger, P. Walla, E. Van der Eycken, N. Kaval and C. O. Kappe, “Scability of Microwave-Assisted Organic Synthesis. From Single-Mode to Multimode Parallel Batch Reactors,” Organic Process Research & Development, Vol. 7, No. 5, 2003, pp. 707- 716. doi:10.1021/op034075+
[25] R. Martínez-Palou, “Microwave-Assisted Synthesis Using Ionic Liquids,” Molecular Diversity, Vol. 14, No. 1, 2010, pp. 3-25. doi:10.1007/s11030-009-9159-3
[26] G. Kalita, M. Masahiro, H. Uchida, K. Wakita and M. Umeno, “Few Layers of Graphene as Transparent Electrode from Botanical Derivate Camphor,” Materials Letters, Vol. 64, No. 20, 2010, pp. 2180-2183.
[27] S. Kar and S. Chaudhuri, “Optical Properties of Diamond Films Deposited by Low Temperature Microwave Plasma CVD from Camphor,” Materials Letters, Vol. 58, No. 24, 2004, pp. 3029-3033. doi:10.1016/j.matlet.2004.05.035
[28] N. R. Serebryanaya, “Reference Pattern Production for Superhard Pressure-Induced Phases of Fullerite C60,” International Center for Diffraction Data, Power Diffraction File (PDF-2), No. 49-1717.
[29] N. R. Serebryanaya, “Reference Pattern Production for Superhard Pressure-Induced Phases of Fullerite C60,” International Center for Diffraction Data, Power Diffraction File (PDF-2), No. 49-1718.
[30] M. Rusop, S. M. Mominuzzaman, T. Soga and T. Jimbo, “Properties of a-C:H Films Grown in Nert Gas Ambient with Camphoric Carbon Precursor of Pulsed Laser Deposition,” Diamond and Related Materials, Vol. 13, No. 11-12, 2004, pp. 2180-2186.
[31] D. Pradhan and M. Sharon, “Opto-Electrical Properties of Amorphous Carbon Thin Film Deposited from Natural Precursor Camphor,” Applied Surface Science, Vol. 253, No. 17, 2007, pp. 7004-7010. doi:10.1016/j.apsusc.2007.02.030
[32] H.-B. Bürgi, R. Restori and D. Schwarzenbach, “Structure of C60: Partial Orientational Order in the Room- Temperature Modification of C60,” Acta Crystallographica Section B: Structural Science, Vol. 49, No. 5, 1993, pp. 832-838. doi:10.1107/S0108768193004008
[33] V. D. Blank, V. M. Levin, V. M. Prokhorov, G. A. Dubitskiy and N. Serebryanaya, “Elastic Properties of Ultrhard Fullerites,” Journal of Experimental and Theoretical Physics, Vol. 114, No. 4, 1998, pp. 1365-1374.
[34] R. Chen and P. Trucano, “Comparisons of Atomic Thermal Motions for Graphite at 300 K Based on X-Ray, Neutron, and Phonon-Spectrum Data,” Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Vol. 34, No. 6, 1978, pp. 979-982. doi:10.1107/S0567739478002004
[35] D. L. Dorset and M. P. McCourt, “Automated Structure Analysis in Electron Crystallography: Phase Determination with the Tangent Formula and Least-Squares Refinement,” Acta Crystallographica Section A: Foundations of Crystallography, Vol. 50, No. 3, 1994, pp. 287- 292.
[36] S. Adhikari, H. R. Aryal, D. C. Ghimire, G. Kalita and M. Umeno, “Optical Band Gap of Nitrogenated Amorphous Carbon Thin Films Synthesized by Microwave Surface Wave Plasma CVD,” Diamond and Related Materials, Vol. 17, No. 7-10, 2008, pp. 1666-1668.
[37] J. Bermúdez-Polonio, “Methods of X-Ray Diffraction: Principles and Applications,” Pirámide, Madrid, 1981, pp. 281-286.
[38] I. Rosales-Chávez, “Group-Subgroup Relations Crystallographic and Analysis Phase Transformations Induced Point Defects,” Doctoral Tesis, University of Mexico, UNAM, México City, 2008, pp. 2-204.
[39] M. St?hr, T. Wagner, M. Gabriel, B. Weyers and R. M?ller, “Binary Molecular Layers of C60 and Copper Phtalocyanine on Au (111): Self-Organized Nanostructuring,” Advanced Functional Materials, Vol. 1, No. 3, 2001, pp. 175- 178. doi:10.1002/1616-3028(200106)11:3<175::AID-ADFM175>3.0.CO;2-L
[40] W. F. Smith, “Fundamentals of Materials Science and Engineering,” 2nd Edition, McGraw-Hill, New York, 1993, p. 200.
[41] S. W. Ryu, C. J. Kim, S. Kim, M. Seo, C. Yun, S. Yoo and Y. K. Choi, “Fullerene-Derivate-Embedded Nanogap Field-Effect-Transistor and Its Nonvolatile Memory Application,” Small, Vol. 6, No. 15, 2010, pp. 1617-1621. doi:10.1002/smll.200902410
[42] T. K. Ishii, “Hanbook of Microwave Technology: Applications,” Academic Press, Cambridge, 1995, pp. 1-337.
[43] A. T. Ohns and D. F. Arne, “Engineers’ Handbook of Industrial Microwave Heating,” IET, London, 1998, pp. 1-232.
[44] D. Bogdal, “Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures,” Elsevier Science, Amsterdam, 2005, pp. 1-214.
[45] S. G. Buga, V. D. Blank, G. A. Dubitsky, N. R. Serebryanaya, A. Fransson, T. Wagberg and B. Sundqvist, “Synthesis of Superhard 3D-polymeric C60 Fullerites from Rhombohedral 2D-polymer by High-pressure-High-Temperature Treatment,” High Pressure Research, Vol. 23, No. 3, 2003, pp.259-264.
[46] K. Kohli, H. Chaudhary, P. Rathee, S. Rathee and V. Kumar, “Fullerenes: New Contour to Carbon Chemistry,” Pharma Times, Vol. 41, No. 2, 2009, pp. 9-12.
[47] “ICDD Grant-in-Aid,” International Centre for Diffraction Data Pcpdfwin, Moscow, 2010.
[48] D. Pradhan and M. Sharon, “Electrochemical Behavior of Amorphous Carbon Obtained from Camphor,” Electrochimica Acta, Vol. 50, No. 14, 2005, pp. 2905-2910. doi:10.1016/j.electacta.2004.11.036
[49] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy: A Textbook for Materials Science,” 2nd Edition, Springer, New York, 2009, pp. 1-757.
[50] A. Goel, J. B. Howard and J. B. Vander Sande, “Size Analysis of Single Fullerene Molecules by Electron Microscopy,” Carbon, Vol. 42, No. 10, 2004, pp. 1907-1915. doi:10.1016/j.carbon.2004.03.022
[51] S. Jun-Yeo, R. Pode, J. Sun-Ahn and H. Min-Kim, “Study on the Size of Fullerene (C60) Aggregates in Solution by Photoluminescence and HRTEM Measurements,” Journal of the Korean Physical Society, Vol. 55, No. 1, 2009, pp. 322-326.
[52] L. A. Chernozatonskii, N. R. Serebryanaya and B. N. Mavrin, “The Superhard Crystalline Three-Dimensional Polymerized,” Chemical Physics Letters, Vol. 316, No. 3- 4, 2000, pp. 199-204. doi:10.1016/S0009-2614(99)01288-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.