High-Temperature Thermoelectric Power Studies of Ni-Mg Ferrites

Abstract

Thermoelectric Power studies of Ni-Mg ferrites having chemical formula Ni1–xMgxFeO4 (x = 0.2, 0.4, 0.6 and 0.8) were investigated from room temperature to well beyond Curie temperature by the differential method. The Seebeck coefficient is negative for all the composition. It clearly speaks that all the considered ferrite compositions behave as n-type semiconductors. Plots of Seebeck coefficient (S) versus temperature shows maximum at Curie temperature. The values of the charge carrier concentration have been computed from the observed values of Seebeck coefficient. The electrical properties of the Ni-Mg mixed ferrites have been measured at room temperature by two-probe method. On the basis of these results an explanation for the conduction mechanism in Ni-Mg mixed ferrites is suggested.

Share and Cite:

A. Gaffoor and D. Ravinder, "High-Temperature Thermoelectric Power Studies of Ni-Mg Ferrites," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 237-240. doi: 10.4236/wjcmp.2012.24040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Berchmans, R. Kalaiselvan, P. N. Selva Kumar and C. O. Augustin, “Structural and Electrical Properties of Ni1-xMgxFe2O4 Synthesized by Citrate Gel Process,” Journal of Magnetism and Magnetic Materials, Vol. 279, No. 1, 2004, pp. 103-110. doi:10.1016/j.jmmm.2004.01.073
[2] Dr. D. Ravinder, T. Seshagiri Rao, “Electrical Conductivity and Thermoelectric Power of Lithium-Cadmium Ferrites,” Crystal Research and Technology, Vol. 25, No. 8, 1990, pp. 963-969. doi:10.1002/crat.2170250820
[3] Z. Simsa, “Czech,” Journal of Physics B, Vol. 16, 1996, p. 919-921.
[4] V. D. Reddy, M. A. Malik and P. V. Reddy, “Electrical Transport Properties of Manganese-Magnesium Mixed Ferrites,” Materials Science and Engineering B, Vol. 8, No. 4, 1991 pp. 295-301. doi:10.1016/0921-5107(91)90050-6
[5] V. R. K. Murthy and J. Sobhanadri, “Electrical Conductivity of Some Nickel-Zinc Ferrites,” Physica Status Solidi, Vol. 38, No. 2, 1976, pp. 647-651. doi:10.1002/pssa.2210380227
[6] D. Ravinder, “Electrical Properties of Lithium-Zinc and Lithium-Cadmium Ferrites,” Thesis, Osmania University, Hyderabad, 1988.
[7] S. M. Yunus, H. S. Shim, C. H. Lee, M. A. Asgar, F. U. Ahmed, A. K. M Zakaria, “Neutron Diffraction Studies of the Diluted Spinel Ferrite ZnxMg0.75?xCu0.25Fe2O4,” Journal of Magnetism and Magnetic Materials, Vol. 232, No. 3, 2001, pp. 121-132. doi:10.1016/S0304-8853(01)00224-4
[8] A. V. Ramana Reddy, G. Ranga Mohan, D. Ravinder, B. S. Boyanov, “High-Frequency Dielectric Behaviour of Polycrystalline Zinc Substituted Cobalt Ferrites,” Journal of Materials Science, Vol. 34, 1999, pp. 3169-3176.
[9] P. P. Hankar, V. T. Vady , U. B. Sankpau, L. V. Gavail, R. Sasikala and I. S. Mulla, “Effect of sintering temperature and thermoelectric power studies of the system MgFe2?xCrxO4,” Solid State Sciences, Vol. 11, 2009, pp. 2075-2079.
[10] T. E. Whall, N. Salerno, Y. G. Proykova, K. A. Misza and S. Mazen, Philosophical Magazine, Vol. 53, 1986, pp. L107-L111.
[11] Zaki, “The Influence of Zn Ions Substitution on the Transport Properties of Mg-Ferrite,” Physica B, Vol. 404, 2009, pp. 3356-3362.
[12] D. Ravinder and K. Latha “Electrical Conductivity of Mn-Zn Ferrites,” Journal of Applied Physics, Vol. 75, No. 10, 1994, pp. 6118-6120. doi:10.1063/1.355479
[13] F. J. Morin and T. H. Gebella, “Electrical Conductivity and Seebeck Effect in Ni0.80Fe2.20O4,” Physical Review, Vol. 99, No. 2, 1955, pp. 467-498 doi:10.1103/PhysRev.99.467
[14] N. Rezlescu, D. Condurhach, P. Petairu and E. Luca, “Resistivity and Curie Point of Li-Zn Ferrites,” Journal of the American Ceramic Society, Vol. 57, No. 1, 1974, p. 40. doi:10.1111/j.1151-2916.1974.tb11360.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.