Unilateral 6-OHDA th-fgfr1(tk-) mouse model supports the role of FGFs in Parkinson’s disease and the effects of nicotine and L-DOPA on spontaneous motor impairments

Abstract

In the developing and adult brain, neurotrophic growth factors support the growth and protec tion of dopaminergic neuronal systems. Recently, links between impaired neurotrophin support of dopamine (DA) neurons has been described in Parkinson’s Disease (PD). Fibro- blast growth factor (FGF) has a unique association with DA neurons in that FGF signaling is vitally important for the development and protection of adult DA neurons. We assessed the role of substantia nigra (SN)-expressed FGFs in the nigrostriatal dopaminergic system using a transgenic mouse, th-fgfr1(tk-). In these mice, generated by expression of dominant negative FGFR1(TK-) from the tyrosine hydroxylase (TH) gene promoter, reduced FGF signaling results in smaller and less dense adult nigrostriatal DA neurons, similar to what is observed in PD. With unilateral 6-hydroxydopamine (6-OHDA) lesions, th-fgfr1(tk-) mice exhibited extensive unilateral nigrostriatal damage with robust spontaneous (non-drug induced) asymmetrical turning and a decreased latency to remain on the accelerating rotarod. L-DOPA remains the gold standard for PD therapy despite debilitating hyperkinetic and dyskinetic side effects. The nicotinic acetylcholine system has recently been targeted as an alternative system to combat PD motor symptoms. Nicotine effectively stimulates dopaminergic transmission in the nigrostriatal pathway and mediates movement. Using unilaterally lesioned th-fgfr1(tk-) mice, long term (11 day) oral administration of nicotine increased spontaneous bidirectional turning and increased the latency before falling from the accelerating rotarod. In a separate analysis, L-DOPA treatment reversed directionality of rotation and further deepened motor discoordination, suggesting activation of hypersensitive postsynaptic DA receptors in the denervated striata. These results in a transgenic model of PD provide insights into the cellular mechanisms underlying L-DOPA and nicotinic therapies and offer further evidence of nicotine’s capacity to facilitate movement and enhance motor coordination in PD.

Share and Cite:

Kucinski, A. , Wersinger, S. , Stachowiak, E. , Radell, M. , Hesse, R. , Corso, T. , Parry, M. , Bencherif, M. , Jordan, K. , Letchworth, S. and Stachowiak, M. (2012) Unilateral 6-OHDA th-fgfr1(tk-) mouse model supports the role of FGFs in Parkinson’s disease and the effects of nicotine and L-DOPA on spontaneous motor impairments. Health, 4, 1178-1190. doi: 10.4236/health.2012.431176.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rodriguez-Oroz, M.C., et al. (2009) Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. The Lancet Neurology, 8, 1128- 1139. doi:10.1016/S1474-4422(09)70293-5
[2] Adams, J.D., Jr., Chang, M.L. and Klaidman, L. (2001) Parkinson’s disease—Redox mechanisms. Current Medicinal Chemistry, 8, 809-814. doi:10.2174/0929867013372995
[3] Jenner, P. (2003) Oxidative stress in Parkinson’s disease. Annals of Neurology, 53, S26-36; discussion S36-38.
[4] Harman, D. (2006) Free radical theory of aging: An update: Increasing the functional life span. Annals of the New York Academy of Sciences, 1067, 10-21. doi:10.1196/annals.1354.003
[5] Connor, B. and Dragunow, M. (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Research Reviews, 27, 1-39. doi:10.1016/S0165-0173(98)00004-6
[6] Grothe, C. and Timmer, M. (2007) The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Research Reviews, 54, 80-91. doi:10.1016/j.brainresrev.2006.12.001
[7] Lin, L.F., et al. (1993) GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130-1132. doi:10.1126/science.8493557
[8] Andereggen, L., et al. (2009) Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson’s disease. Brain Research, 1276, 39-49. doi:10.1016/j.brainres.2009.04.021
[9] Hadjiconstantinou, M., et al. (1991) Epidermal growth factor enhances striatal dopaminergic parameters in the 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse. Journal of Neurochemistry, 57, 479-482. doi:10.1111/j.1471-4159.1991.tb03776.x
[10] Hyman, C., et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230-232. doi:10.1038/350230a0
[11] Lindholm, P., et al. (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature, 448, 73-77. doi:10.1038/nature05957
[12] Petrova, P., et al. (2003) MANF: A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. Journal of Molecular Neuroscience, 20, 173-188. doi:10.1385/JMN:20:2:173
[13] Mogi, M., et al. (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neuroscience Letters, 270, 45-48. doi:10.1016/S0304-3940(99)00463-2
[14] Howells, D.W., et al. (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Experimental Neurology, 166, 127-135. doi:10.1006/exnr.2000.7483
[15] Nagatsu, T., et al. (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. Journal of Neural Transmission Supplementa, 60, 277-290.
[16] Parain, K., et al. (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport, 10, 557-561. doi:10.1097/00001756-199902250-00021
[17] Tooyama, I., et al. (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson's disease. Brain Research, 656, 165-168. doi:10.1016/0006-8993(94)91378-1
[18] Choi, J.M., et al. (2011) Analysis of mutations and the association between polymorphisms in the cerebral dopa- mine neurotrophic factor (CDNF) gene and Parkinson disease. Neuroscience Letters, 493, 97-101. doi:10.1016/j.neulet.2011.02.013
[19] Chen, L., et al. (2011) The 712A/G polymorphism of Brain-derived neurotrophic factor is associated with Parkinson’s disease but not major depressive disorder in a Chinese han population. Biochemical and Biophysical Research Communications, 408, 318-321. doi:10.1016/j.bbrc.2011.04.030
[20] Wang, G., et al. (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. The American Journal of Human Genetics, 82, 283-289. doi:10.1016/j.ajhg.2007.09.021
[21] Mizuta, I., et al. (2008) Calbindin 1, fibroblast growth factor 20, and alpha-synuclein in sporadic Parkinson’s disease. Human Genetics, 124, 89-94. doi:10.1007/s00439-008-0525-5
[22] Krejci, P., et al. (2009) Molecular pathology of the fibroblast growth factor family. Human Mutation, 30, 1245-1255. doi:10.1002/humu.21067
[23] Mason, I. (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nature Reviews Neuroscience, 8, 583-596. doi:10.1038/nrn2189
[24] Mayer, E., et al. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—I. Effects in vitro. Neuroscience, 56, 379-388. doi:10.1016/0306-4522(93)90339-H
[25] Li, A., et al. (2006) Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. The FASEB Journal, 20, 1263-1265. doi:10.1096/fj.05-5510fje
[26] Giacobini, M.M., et al. (1993) Fibroblast growth factors enhance dopamine fiber formation from nigral grafts. Brain Research Developmental Brain Research, 75, 65- 73. doi:10.1016/0165-3806(93)90066-J
[27] Date, I., et al. (1993) Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Research, 621, 150-154. doi:10.1016/0006-8993(93)90312-B
[28] Otto, D. and Unsicker, K. (1993) FGF-2-mediated pro- tection of cultured mesencephalic dopaminergic neurons against MPTP and MPP+: Specificity and impact of culture conditions, non-dopaminergic neurons, and astroglial cells. Journal of Neuroscience Research, 34, 382-393. doi:10.1002/jnr.490340403
[29] Zawada, W.M., et al. (1996) Growth factors rescue em- bryonic dopamine neurons from programmed cell death. Experimental Neurology, 140, 60-67. doi:10.1006/exnr.1996.0115
[30] Peng, J., et al. (2008) Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neuroscience, 153, 664-670. doi:10.1016/j.neuroscience.2008.02.063
[31] Casper, D. and Blum, M. (1995) Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. Journal of Neurochemistry, 65, 1016-1026. doi:10.1046/j.1471-4159.1995.65031016.x
[32] Hsuan, S.L., Klintworth, H.M. and Xia, Z. (2006) Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. Journal of Neuroscience, 26, 4481- 4491. doi:10.1523/JNEUROSCI.4922-05.2006
[33] Mayer, E., Fawcett, J.W. and Dunnett, S.B. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—II. Effects on nigral transplants in vivo. Neuroscience, 56, 389-398. doi:10.1016/0306-4522(93)90340-L
[34] Timmer, M., et al. (2004) Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Experimental Neurology, 187, 118-136. doi:10.1016/j.expneurol.2004.01.013
[35] Murase, S. and McKay, R.D. (2006) A specific survival response in dopamine neurons at most risk in Parkinson’s disease. Journal of Neuroscience, 26, 9750-9760. doi:10.1523/JNEUROSCI.2745-06.2006
[36] Timmer, M., et al. (2007) Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. Journal of Neuroscience, 27, 459-471. doi:10.1523/JNEUROSCI.4493-06.2007
[37] Klejbor, I., et al. (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons—inhibition results in a schizophrenia-like syn- drome in transgenic mice. Journal of Neurochemistry, 97, 1243-1258. doi:10.1111/j.1471-4159.2006.03754.x
[38] Moller, A., (1992) Mean volume of pigmented neurons in the substantia nigra in Parkinson’s disease. Acta Neurolpgica Scandinavica Supplementum, 137, 37-39.
[39] Ma, S.Y., et al. (1996) A quantitative morphometrical study of neuron degeneration in the substantia nigra in Parkinson’s disease. Journal of the Neurological Sciemces, 140, 40-45. doi:10.1016/0022-510X(96)00069-X
[40] Klejbor, I., et al. (2009) Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis. Schizophrenia Research, 113, 308-321. doi:10.1016/j.schres.2009.06.006
[41] Kucinski, A., et al. (2012) alpha7 neuronal nicotinic receptor agonist (TC-7020) reverses increased striatal dopamine release during acoustic PPI testing in a trans- genic mouse model of schizophrenia. Schizophrenia Research, 136, 82-87. doi:10.1016/j.schres.2012.01.005
[42] Jenner, P. (2008) Molecular mechanisms of L-DOPA- induced dyskinesia. Nature Reviews Neuroscience, 9, 665-677. doi:10.1038/nrn2471
[43] Linazasoro, G. (2005) New ideas on the origin of L- dopa-induced dyskinesias: Age, genes and neural plasticity. Trends in Pharmacological Sciences, 26, 391-397. doi:10.1016/j.tips.2005.06.007
[44] Grace, A.A. (2008) Physiology of the normal and dopamine-depleted basal ganglia: Insights into levodopa pharma- cotherapy. Movement Disorders, 23, S560-S569. doi:10.1002/mds.22020
[45] Quik, M., et al. (2010) Chronic nicotine treatment increases nAChRs and microglial expression in monkey substantia nigra after nigrostriatal damage. Journal of Molecular Neuroscience, 40, 105-113. doi:10.1007/s12031-009-9265-9
[46] Gotti, C., et al. (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: Primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. The Journal of Neurosciemce, 30, 5311- 5325. doi:10.1523/JNEUROSCI.5095-09.2010
[47] Le Novere, N., et al. (1999) Involvement of alpha 6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport, 10, 2497-2501. doi:10.1097/00001756-199908200-00012
[48] Zhou, F.M., Liang, Y. and Dani, J.A. (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4, 1224-1229. doi:10.1038/nn769
[49] Dani, J.A. and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699-729. doi:10.1146/annurev.pharmtox.47.120505.105214
[50] Quik, M., et al. (2004) Loss of alpha-conotoxinMII- and A85380-sensitive nicotinic receptors in Parkinson’s disease striatum. Journal of Neurochemistry, 88, 668-679. doi:10.1111/j.1471-4159.2004.02177.x
[51] Wonnacott, S. (1997) Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20, 92-98. doi:10.1016/S0166-2236(96)10073-4
[52] Exley, R. and Cragg, S.J. (2008) Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. British Journal of Pharmacology, 153, S283-S297. doi:10.1038/sj.bjp.0707510
[53] Zhou, F.M., Wilson, C.J. and Dani, J.A. (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology, 53, 590-605. doi:10.1002/neu.10150
[54] Maskos, U. (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: Relevance to drugs of abuse and pathology. British Journal of Pharmacology, 153, S438- S445. doi:10.1038/bjp.2008.5
[55] Itti, E., et al. (2009) Dopamine transporter imaging under high-dose transdermal nicotine therapy in Parkinson’s disease: An observational study. Nuclear Medicine Communication, 30, 513-518.
[56] Villafane, G., et al. (2007) Chronic high dose transdermal nicotine in Parkinson’s disease: An open trial. European Journal of Neurology, 14, 1313-1316. doi:10.1111/j.1468-1331.2007.01949.x
[57] Meshul, C.K., et al. (2002) Nicotine alters striatal glutamate function and decreases the apomorphine- induced contralateral rotations in 6-OHDA-lesioned rats. Experimental Neurology, 175, 257-274. doi:10.1006/exnr.2002.7900
[58] Huang, L.Z., et al. (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology, 60, 861-868. doi:10.1016/j.neuropharm.2010.12.032
[59] Quik, M., et al. (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Annals of Neurology, 62, 588-596. doi:10.1002/ana.21203
[60] Quik, M., et al. (2009) Multiple roles for nicotine in Parkinson’s disease. Biochemical Pharmacology, 78, 677- 685. doi:10.1016/j.bcp.2009.05.003
[61] Bialowas, J., et al. (1979) The relationship between catecholamine levels in the hypothalamus and amygdala under influence of glucose overloading in hungry and sated rats. Polish Journal of Pharmacology & Pharmacy, 31, 325-335.
[62] Stachowiak, M.K., et al. (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Research, 291, 164- 167. doi:10.1016/0006-8993(84)90665-6
[63] Ungerstedt, U. and Arbuthnott, G.W. (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy- dopamine lesions of the nigrostriatal dopamine system. Brain Research, 24, 485-493. doi:10.1016/0006-8993(70)90187-3
[64] Deumens, R., Blokland, A. and Prickaerts, J. (2002) Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology, 175, 303-317. doi:10.1006/exnr.2002.7891
[65] Castaneda, E., et al. (2005) Assessment of recovery in the hemiparkinson rat: Drug-induced rotation is inadequate. Physiology & Behavior, 84, 525-535. doi:10.1016/j.physbeh.2005.01.019
[66] Iancu, R., et al. (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behaviournal Brain Research, 162, 1-10. doi:10.1016/j.bbr.2005.02.023
[67] Creese, I., Burt, D.R. and Snyder, S.H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science, 197, 596-598. doi:10.1126/science.877576
[68] Schwarting, R.K. and Huston, J. (1996) Unilateral 6- hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in Neurobiology, 49, 215-266. doi:10.1016/S0301-0082(96)00015-9
[69] Keller, R., et al. (1976) Liquid chromatographic analysis of catecholamines routine assay for regional brain mapping. Life Sciences, 19, 995-1003. doi:10.1016/0024-3205(76)90290-3
[70] Zhang, W.Q., et al. (1988) Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. Brain Research, 461, 335-342. doi:10.1016/0006-8993(88)90264-8
[71] Rozas, G., Guerra, M.J. and Labandeira-Garcia, J.L. (1997) An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Research Protocols, 2, 75-84. doi:10.1016/S1385-299X(97)00034-2
[72] Lundblad, M., et al. (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 16, 110-123. doi:10.1016/j.nbd.2004.01.007
[73] Jackson, D., et al. (1988) Inhibition of striatal acetylcholine release by serotonin and dopamine after the intracerebral administration of 6-hydroxydopamine to neonatal rats. Brain Research, 457, 267-273. doi:10.1016/0006-8993(88)90695-6
[74] Polymeropoulos, M.H., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045-2047. doi:10.1126/science.276.5321.2045
[75] Zimprich, A., et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601-607. doi:10.1016/j.neuron.2004.11.005
[76] Valente, E.M., et al. (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158-1160. doi:10.1126/science.1096284
[77] Bonifati, V., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkin- sonism. Science, 299, 256-259. doi:10.1126/science.1077209
[78] Stachowiak, M.K., Maher, P.A. and Stachowiak, E.K. (2007) Integrative nuclear signaling in cell development— A role for FGF receptor-1. DNA and Cell Biology, 26, 811-826. doi:10.1089/dna.2007.0664
[79] Fang, X., et al. (2005) Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: A novel mechanism of gene regulation. The Journal of Biological Chemistry, 280, 28451-28462. doi:10.1074/jbc.M504400200
[80] Maher, P.A. (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. The Journal of Cell Biology, 134, 529-536. doi:10.1083/jcb.134.2.529
[81] Stachowiak, M.K., et al. (1996) Nuclear accumulation of fibroblast growth factor receptors is regulated by multiple signals in adrenal medullary cells. Molecular Biology of the Cell, 7, 1299-1317.
[82] Reilly, J.F. and Maher, P.A. (2001) Importin betamediated nuclear import of fibroblast growth factor receptor: Role in cell proliferation. The Journal of Cell Biology, 152, 1307-1312. doi:10.1083/jcb.152.6.1307
[83] Myers, J.M., et al. (2003) Nuclear trafficking of FGFR1: A role for the transmembrane domain. Journal of Cellular Biochemistry, 88, 1273-1291. doi:10.1002/jcb.10476
[84] Dunham-Ems, S.M., et al. (2009) Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Molecular Biology of the Cell, 20, 2401-2412. doi:10.1091/mbc.E08-06-0600
[85] van der Walt, J.M., et al. (2004) Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. The American Journal of Human Genetics, 74, 1121-1127. doi:10.1086/421052
[86] Ohmachi, S., et al. (2003) Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. Journal of Neuroscience Research, 72, 436-443. doi:10.1002/jnr.10592
[87] Stachowiak, E.K., et al. (2003) cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). Journal of Neurochemistry, 84, 1296-1312. doi:10.1046/j.1471-4159.2003.01624.x
[88] Corso, T.D., et al. (2005) Transfection of tyrosine kinase deleted FGF receptor-1 into rat brain substantia nigra reduces the number of tyrosine hydroxylase expressing neurons and decreases concentration levels of striatal dopamine. Molecular Brain Research, 139, 361-366. doi:10.1016/j.molbrainres.2005.05.032
[89] Champtiaux, N., et al. (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. Journal of Neuroscience, 23, 7820-7829.
[90] Salminen, O., et al. (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65, 1526-1535. doi:10.1124/mol.65.6.1526
[91] Grady, S., et al. (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synap- tosomes prepared from mouse striatum. Journal of Neurochemistry, 59, 848-856. doi:10.1111/j.1471-4159.1992.tb08322.x
[92] Azam, L., et al. (2005) Alpha-conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. The Journal of Biological Chemistry, 280, 80-87.
[93] Marshall, D.L., Redfern, P.H. and Wonnacott, S. (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo micro- dialysis: Comparison of naive and chronic nicotinetreated rats. Journal of Neurochemistry, 68, 1511-1519. doi:10.1046/j.1471-4159.1997.68041511.x
[94] Pisani, A., et al. (2003) Targeting striatal cholinergic interneurons in Parkinson’s disease: Focus on metabotropic glutamate receptors. Neuropharmacology, 45, 45-56. doi:10.1016/S0028-3908(03)00137-0
[95] Sharma, G. and Vijayaraghavan, S. (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron, 38, 929-939. doi:10.1016/S0896-6273(03)00322-2
[96] Lu, Y., et al. (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. Journal of Pharmacology and Experimental Therapeutics, 287, 648-657.
[97] Grady, S.R., et al. (2001) Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 76, 258-268. doi:10.1046/j.1471-4159.2001.00019.x
[98] Clarke, P.B. and Reuben, M. (1996) Release of [3H]- noradrenaline from rat hippocampal synaptosomes by nicotine: Mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. British Journal of Pharmacology, 117, 595-606. doi:10.1111/j.1476-5381.1996.tb15232.x
[99] Kelton, M.C., et al. (2000) The effects of nicotine on Parkinson's disease. Brain and Cognition, 43, 274-282.
[100] Lemay, S., et al. (2004) Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Progress in Neuro-Psychopharma- cology & Biological Psychiatry, 28, 31-39. doi:10.1016/S0278-5846(03)00172-6
[101] Vieregge, A., et al. (2001) Transdermal nicotine in PD: A randomized, double-blind, placebo-controlled study. Neu- rology, 57, 1032-1035. doi:10.1212/WNL.57.6.1032
[102] Clemens, P., et al. (1995) The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology (Berl), 117, 253-256. doi:10.1007/BF02245195
[103] Gregorio, M.L., et al. (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotoxicity Research, 15, 359-366. doi:10.1007/s12640-009-9041-1
[104] Janhunen, S., Tuominen, R.K. and Ahtee, L. (2005) Comparison of the effects of nicotine and epibatidine given in combination with nomifensine on rotational behaviour in rats. Neuroscience Letters, 381, 314-319. doi:10.1016/j.neulet.2005.02.038
[105] Huang, L.Z., et al. (2009) Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. Journal of Neurochemistry, 109, 826-837. doi:10.1111/j.1471-4159.2009.06011.x
[106] Moffett, J., Kratz, E. and Stachowiak, M.K. (1998) Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. Molecular Brain Research, 55, 293-305. doi:10.1016/S0169-328X(98)00010-2
[107] Belluardo, N., et al. (2000) Neurotrophic effects of central nicotinic receptor activation. Journal of Neural Transmission Supplementa, 60, 227-245.
[108] Mudo, G., et al. (2007) Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience, 145, 470-483. doi:10.1016/j.neuroscience.2006.12.012
[109] Morelli, M., et al. (1993) L-dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain Research, 623, 334-336. doi:10.1016/0006-8993(93)91449-3
[110] Bunney, B.S., Aghajanian, G.K. and Roth, R.H. (1973) Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biology, 245, 123-125.
[111] Grace, A.A. and Bunney, B.S. (1984) The control of firing pattern in nigral dopamine neurons: Single spike firing. Journal of Neuroscience, 4, 2866-2876.
[112] Winkler, C., et al. (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10, 165- 186. doi:10.1006/nbdi.2002.0499

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.