Share This Article:

The Contribution of Waves in Mixing Processes of the Patos Lagoon Plume

Abstract Full-Text HTML Download Download as PDF (Size:1835KB) PP. 1019-1026
DOI: 10.4236/ijg.2012.35102    4,537 Downloads   6,245 Views   Citations

ABSTRACT

The analysis of wave effects above salinity is important in order to define mixing processes and their potential to change density gradients, since action in the region of the Patos Lagoon plume is highly dynamic. This paper aims to evaluate the influence of waves on the mixing pattern of the adjacent continental shelf. Constantly marked by tides and circulation variations, changing from flood to ebb tide, salinity stands as a major parameter for analysis. The study is based on hydrodynamic numerical modeling experiments using the TELEMAC3D model and waves generated by the wind using the TOMAWAC coupled model. The comparison between the situations considering the waves generated by the wind and without waves was made through time series analysis, stratification series, transversal cross sections, longitudinal cross sections, salinity mean fields and diagrams by Richardson and Brünt-V?is?l?s frequency parameters. With the cross sections analysis, the mixing effect generated by the waves was observed, demonstrating clearly that the waves were capable of raising the superficial salinity in regions far from the Patos Lagoon entrance, while at the entrance, the wave effects enhanced the mixing on the deepest layers, decreasing the saline intrusion and expanding the plume more radially on the surface. The space-temporal diagrams were effective to demonstrate the modulation effect of the waves over the salt mixing of saline waters, revealing that wave effects decrease the stratification as well as the Brünt-V?is?l?s frequency and increase the period of buoyancy, due to the mixing increase.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Kirinus, W. Marques, J. Costa and E. Fernandes, "The Contribution of Waves in Mixing Processes of the Patos Lagoon Plume," International Journal of Geosciences, Vol. 3 No. 5, 2012, pp. 1019-1026. doi: 10.4236/ijg.2012.35102.

References

[1] W. C. Marques, E. H. L. Fernandes and O. O. Moller, “Straining and Advection Contributions to the Mixing Process of the Patos Lagoon Coastal Plume, Brazil,” Journal of Geophysical Research, Vol. 115, No. C6, 2010, p. 23. doi:10.1029/2009JC005653
[2] W. C. Marques, E. H. L. Fernandes, I. O. Monteiro and O. O. M?ller, “Numerical Modeling of the Patos Lagoon Coastal Plume, Brazil,” Continental Shelf Research, Vol. 29, No. 3, 2009, pp. 556-571. doi:10.1016/j.csr.2008.09.022
[3] R. H. Stewart, “Introduction to Physical Oceanography,” The University of Texas, Austin, 2006.
[4] W. C. Marques, E. H. Fernandes, O. O. M?ller Jr., B. C. Moraes and A. Malcherek, “Dynamics of the Patos Lagoon Coastal Plume and Its Contribution to the Deposition Pattern of the Southern Brazilian Inner Shelf,” Journal of Geophysical Research, Vol. 115, No. C10, 2010, p. 22.
[5] D. Burrage, J. Wesson, C. Martinez, T. Pérez, O. O. M?ller Jr. and A. Piola, “Patos Lagoon Outflow within the R?o de la Plata Plume Using an Airborne Salinity Mapper : Observing an Embedded Plume,” Continental Shelf Research, Vol. 28, No. 13, 2008, pp. 1625-1638. doi:10.1016/j.csr.2007.02.014
[6] O. O. M?ller Jr. and P. Castaing, “Hydrographical Characteristics of the estuarine area of Patos Lagoon (20?S, Brazil),” In: G. M. Perillo, M. C. Piccolo and M. Pino Eds., Estuaries of South America: The Geomorphology and Dynamics, Springer Verlag, Berlin, 1999, pp. 83-100. doi:10.1007/978-3-642-60131-6_5
[7] O. O. M?ller Jr., J. P. Castello and A. C. Vaz, “The Effect of River Discharge and Winds on the Interannual Variability of the Pink Shrimp Farfantepenaeus Paulensis Production in Patos Lagoon,” Estuaries and Coasts, Vol. 32, No. 4, 2009, pp. 787-796. doi:10.1007/s12237-009-9168-6
[8] E. H. L. Fernandes, K. R. Dyer and O. O. M?ller Jr., “Spatial Gradients in the Flow of Southern Patos Lagoon,” Journal of Coastal Research, Vol. 21, No. 4, 2005, pp. 759-769. doi:10.2112/006-NIS.1
[9] V. H. Kourafalou, L. Y. Oey, J. D. Wang and T. N. Lee, “The Fate of River Discharge on the Continental Shelf 1. Modeling the River Plume and the Inner Shelf Coastal current,” Journal of Geophysical Research, Vol. 101, No. C2, 1996, pp. 3415-3434. doi:10.1029/95JC03024
[10] G. P. Barros and W. C. Marques, “Long-Term Temporal Variability of the Freshwater Discharge and Water Levels at Patos Lagoon, Rio Grande do Sul, Brazil,” International Journal of Geophysics, Vol. 2012, 2012, Article ID: 459497, p 11. doi:10.1155/2012/459497
[11] J. M. Hervouet and L. Van Haren, “TELEMAC-2D Principle Note,” Technical Report HE-43/94/051/B, Electricité de France, 1994.
[12] W. C. Marques, E. H. Fernandes, L. A. O. Rocha and A. Malcherek, “Energy Converting Structures in the Southern Brazilian Shelf: Energy Conversion and Its Influence on the Hydrodynamic and Morphodynamic Processes,” Journal of Earth Sciences and Geotechnical Engineering, Vol. 1, No. 1, 2012, pp. 61-85.
[13] P. D. Silva, “Intera??o onda-corrente na Plataforma Continental Interna do Sul do Brasil,” Master Degree Thesis, Instituto de Oceanografia, Universidade Federal de Rio Grande, 2011.
[14] L. A. Wong, J. C. Chen and L. X. Dong, “A Model of the Plume Front of the Pearl River Estuary, China and Adjacent Coast Waters in the Winter Dry Season,” Continental Shelf Research, Vol. 24, No. 16, 2004, pp. 1779-1795. doi:10.1016/j.csr.2004.06.007
[15] M. G. Gross, “Oceanography: A View of the Earth,” Prentice-Hall, Englewood Cliffs, 1972.
[16] T. R. Akylas, “Nonlinear Forced Wave Phenomena,” In: R. W. Miksad, T. R. Akylas and T. Herbert, Eds., Nonlinear Wave Interactions in Fluids, ASME, New York, 1988, pp. 157-63.
[17] J. M. Hervouet and L. Van Haren, “Recent Advances in Numerical Methods for Fluid Flows,” In: M. G. Anderson, D. E. Walling and P. D. Bates, Eds. Floodplain processes, Wiley, Chichester, 1996, pp. 183-214.
[18] L. B. Miranda, B. M. De Castro and B. Kjerve, “Princípios de Oceanografia Física de Estuários,” Editora da Universidade de S?o Paulo, S?o Paulo, 2002.
[19] S. Krieger, “Análise de dados do projeto COROAS— Larga Escala,” 2005.
[20] D. C. Cuchiara, E. H. Fernandes, J. C. Strauch, J. C. Winterwerp and L. J. Calliari, “Determination of the Wave Climate for the Southern Brazilian Shelf,” Continental Shelf Research, Vol. 29, No. 3, 2009, pp. 545-555. doi:10.1016/j.csr.2008.09.025
[21] R. W. Garvine, “Penetration of Buoyant Coastal Discharge onto the Continental Shelf: A Numerical Model Experiment,” Journal of Physical Oceanography, Vol. 29, No. 8, 1999, pp. 1892-1909. doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2
[22] S.-Y. Chao, “Tidal Modulation of Estuarine Plumes,” Journal of Physical Oceanography, Vol. 20, No. 7, 1990, pp. 1115-1123.
[23] X. Guo and A. Valle-Levinson, “Tidal Effects on Estuarine Circulation and Outflow Plume in the Chesapeake Bay,” Continental Shelf Research, Vol. 27, No. 1, 2007, pp. 20-42.
[24] I. S. Robinson, “Satellite Oceanography,” 1st Edition, Ellis Horwood Limited, Chichester, 1985.
[25] K. R. Dyer, “Circulation and Mixing in Stratified Estuaries,” Marine Chemistry, Vol. 32, No. 2-4, 1991, pp. 111-120. doi:10.1016/0304-4203(91)90031-Q
[26] R. W. Garvine, “Observations of the Motion Field of the Connecticut River plume,” Journal of Geophysical Research, Vol. 82, No. 3, 1977, pp. 441-454. doi:10.1029/JC082i003p00441
[27] K. R. Dyer, “Estuaries,” John Wiley & Sons, Hoboken, 1997.
[28] K. R. Dyer and A. L. New, “Intermittency in Estuarine Mixing,” In: D. A. Wolfe, Ed., Estuarine Variability, Harcourt Brace Jovanovich, Orlando, 1986, pp. 321-339.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.