Genome-wide comparison inferred the origin and evolution of B-cell epitopes on the proteins of human influenza A virus

Abstract

The novel strain H1N1 caused the outbreak of first pandemic influenza in 21 century. Now it is a common component of current seasonal influenza viruses. The recent transmission and plentiful genome sequences available provided a good opportunity to study the origin and evolution of epitopes on the proteins of human influenza virus. In the present study, the B-cell epitope compositions in the pandemic strains, circulating traditional seasonal strains, swine strains as well as highly virulent avian strain H5N1 were identified with the aid of the Immune Epitope DataBase (IEDB) and were compared at genomic level. A total of 14210 distinct sequences down-loaded from NCBI database were used for analysis. Some epitopes on proteins HA or NA, not conserved in recent seasonal strains, were found in 2009 pandemic strains but existed in the early human strains (1919-1935). The pandemic strain shared higher conserved epitopes with “bird flu” virus H5N1than classic human seasonal strains. The epitopes that could exist at common antigenic regions of HA protein are needed to further identify. The genetic exchanges between human and swine population by transmission was very active but the princepal side of the transmission could be from swine to human. These results provided valuable information on influenza A virus evolution and transmission by means of epitope analysis at genomic level.

Share and Cite:

Lara-Ramírez, E. , Segura-Cabrera, A. , Salazar, M. , Rodríguez-Pérez, M. and Guo, X. (2012) Genome-wide comparison inferred the origin and evolution of B-cell epitopes on the proteins of human influenza A virus. Health, 4, 946-954. doi: 10.4236/health.2012.430145.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., et al. (2008) The influenza virus resource at the National Center for Biotechnology Information. Journal of Virology, 82, 596-601. doi:10.1128/JVI.02005-07
[2] Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., et al. (2005) The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 57, 326-336. doi:10.1007/s00251-005-0803-5
[3] Nguyen, H.H., Zemlin, M., Ivanov, I.I., Andrasi, J., Zemlin, C., Vu, H.L., et al. (2007) Heterosubtypic immunity to influenza A virus infection requires a properly diversified antibody repertoire. Journal of Virology, 81, 9331-9338. doi:10.1128/JVI.00751-07
[4] Greenbaum, J.A., Kotturi, M.F., Kim, Y., Oseroff, C., Vaughan, K., Salimi, N., et al. (2009) Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proceedings of the National Academy of Sciences of USA, 106, 20365-20370. doi:10.1073/pnas.0911580106
[5] Katoh, K. and Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief in Bioinformatics, 9, 286-298. doi:10.1093/bib/bbn013
[6] Gouy, M., Guindon, S. and Gascuel, O. (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221-224. doi:10.1093/molbev/msp259
[7] Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: A sequence logo generator. Genome Research, 14, 1188-1190. doi:10.1101/gr.849004
[8] Xu, R., Ekiert, D.C., Krause, J.C., Hai, R., Crowe, J.E. Jr. and Wilson, I.A. (2010) Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science, 328, 357-360. doi:10.1126/science.1186430
[9] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., et al. (2004) UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605-1612. doi:10.1002/jcc.20084
[10] Hancock, K., Veguilla, V., Lu, X., Zhong, W., Butler, E.N., Sun, H., et al. (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. The New England Journal of Medicine, 361, 1945-1952. doi:10.1056/NEJMoa0906453
[11] Rizzo, C., Rota, M.C., Bella, A., Alfonsi, V., Declich, S., Caporali, M.G., et al. (2010) Cross-reactive antibody responses to the 2009 A/H1N1v influenza virus in the Italian population in the pre-pandemic period. Vaccine, 28, 3558-3562. doi:10.1016/j.vaccine.2010.03.006
[12] Itoh, Y., Shinya, K., Kiso, M., Watanabe, T., Sakoda, Y., Hatta, M., et al. (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature, 460, 1021-1025.
[13] Huang, D.T., Shao, P.L., Huang, K.C., Lu, C.Y., Wang, J.R., Shih, S.R., et al. (2011) Serologic status for pandemic (H1N1) 2009 virus, Taiwan. Emerging Infectious Diseases, 17, 76-78. doi:10.3201/eid1701.100014
[14] Li, G.M., Chiu, C., Wrammert, J., McCausland, M., Andrews, S.F., Zheng, N.Y., et al. (2012) Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proceedings of the National Academy of Sciences of USA, 109, 9047-9052. doi:10.1073/pnas.1118979109
[15] Khurana, S., Suguitan, A.L. Jr., Rivera, Y., Simmons, C.P., Lanzavecchia, A., Sallusto, F., et al. (2009) Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Medicine, 6, e1000049. doi:10.1371/journal.pmed.1000049
[16] Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., et al. (2005) The immune epitope database and analysis resource: From vision to blueprint. PLOS Biology, 3, e91. doi:10.1371/journal.pbio.0030091
[17] Zhou, J.J., Tian, J., Fang, D.Y., Liang, Y., Yan, H.J., Zhou, J.M., et al. (2011) Analysis of antigen epitopes and molecular pathogenic characteristics of the 2009 H1N1 pandemic influenza A virus in China. Acta Virologica, 55, 195-202. doi:10.4149/av_2011_03_195
[18] De Groot, A.S., Ardito, M., McClaine, E.M., Moise, L. and Martin, W.D. (2009) Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A (H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine. Vaccine, 27, 5740-5747. doi:10.1016/j.vaccine.2009.07.040
[19] Rodriguez-Alvarez, M., Velasco-Velasco, A.M., Alvarez-Anell, N.J., Jimenez-Corona, M.E. and de Leon-Rosales, S.P. (2009) Identification of seasonal vaccine hemagglutinin subtype 1 (H1) epitopes in Mexican isolates of the new influenza A (H1N1) 2009 virus. Archives of Medical Research, 40, 687-692. doi:10.1016/j.arcmed.2009.12.002
[20] Sun, Y., Shi, Y., Zhang, W., Li, Q., Liu, D., Vavricka, C., et al. (2010) In silico characterization of the functional and structural modules of the hemagglutinin protein from the swine-origin influenza virus A (H1N1)-2009. Science China Life Sciences, 53, 633-642. doi:10.1007/s11427-010-4010-8
[21] Tu, W., Mao, H., Zheng, J., Liu, Y., Chiu, S.S., Qin, G., et al. (2010) Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. Journal of Virology, 84, 6527-6235. doi:10.1128/JVI.00519-10
[22] Gras, S., Kedzierski, L., Valkenburg, S.A., Laurie, K., Liu, Y.C., Denholm, J.T., et al. (2010) Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proceedings of the National Academy of Sciences of USA, 107, 12599-12604. doi:10.1073/pnas.1007270107
[23] Brownlee, G.G. and Fodor, E. (2001) The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philosophical Transactions of the Royal Society B: Biological Science, 356, 1871-1876. doi:10.1098/rstb.2001.1001
[24] Zhang, W., Qi, J., Shi, Y., Li, Q., Gao, F., Sun, Y., et al. (2010) Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. Protein Cell, 1, 459-467. doi:10.1007/s13238-010-0059-1
[25] Wrammert, J., Koutsonanos, D., Li, G.M., Edupuganti, S., Sui, J., Morrissey, M., et al. (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. Journal of Experimental Medicine, 208, 181-193. doi:10.1084/jem.20101352
[26] Krause, J.C., Tsibane, T., Tumpey, T.M., Huffman, C.J., Basler, C.F., Crowe, J.E. Jr. (2011) A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. Journal of Virology, 85, 10905-10908. doi:10.1128/JVI.00700-11
[27] Pourbohloul, B., Ahued, A., Davoudi, B., Meza, R., Meyers, L.A., Skowronski, D.M., et al. (2009) Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza and Other Respiratory Viruses, 3, 215-222. doi:10.1111/j.1750-2659.2009.00100.x
[28] Howden, K.J., Brockhoff, E.J., Caya, F.D., McLeod, L.J., Lavoie, M., Ing, J.D., et al. (2009) An investigation into human pandemic influenza virus (H1N1) 2009 on an Alberta swine farm. Canadian Veterinary Journal, 50, 1153-1161.
[29] Weingartl, H.M., Berhane, Y., Hisanaga, T., Neufeld, J., Kehler, H., Emburry-Hyatt, C., et al. (2010) Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd. Journal of Virology, 84, 2245-2256. doi:10.1128/JVI.02118-09
[30] Pasma, T. and Joseph, T. (2010) Pandemic (H1N1) 2009 infection in swine herds. Emerging Infectious Diseases of Canada, 16, 706-708. doi:10.3201/eid1604.091636
[31] Zhou, H., Wang, C., Yang, Y., Guo, X., Kang, C., Chen, H., et al. (2011) Pandemic (H1N1) 2009 virus in swine herds. Emerging Infectious Diseases of China, 17, 1757-1759. doi:10.3201/eid1709.101916
[32] Anhlan, D., Grundmann, N., Makalowski, W., Ludwig, S. and Scholtissek, C. (2011) Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis. RNA, 17, 64-73. doi:10.1261/rna.2395211
[33] Taubenberger, J.K., Reid, A.H., Janczewski, T.A. and Fanning, T.G. (2001) Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philosophical Transactions of the Royal Society B: Biological Science, 356, 1829-1839. doi:10.1098/rstb.2001.1020
[34] Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G. and Fanning, T.G. (2005) Characterization of the 1918 influenza virus polymerase genes. Nature, 437, 889-893. doi:10.1038/nature04230
[35] Antonovics, J., Hood, M.E. and Baker, C.H. (2006) Molecular virology: Was the 1918 flu avian in origin? Nature, 440, E9.
[36] Vijaykrishna, D., Poon, L.L., Zhu, H.C., Ma, S.K., Li, O.T., Cheung, C.L., et al. (2010) Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science, 328, 1529. doi:10.1126/science.1189132
[37] Ducatez, M.F., Hause, B., Stigger-Rosser, E., Darnell, D., Corzo, C., Juleen, K., et al. (2011) Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs. Emerging Infectious Diseases of US, 17, 1624-1629. doi:10.3201/eid1709.110338
[38] MMWR (2011) Swine-origin influenza A (H3N2) virus infection in two children—Indiana and Pennsylvania, July-August 2011. Morbidity and Mortality Weekly Report, 60, 1213-1215.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.