Development of a Low Cost Pulsed Laser Deposition System for Thin Films Growth

Abstract

.Pulsed Laser Deposition (PLD) is a powerful technique to grow thin films. Oxides, Magnetics and superconducting materials have been obtained by PLD and theirs properties are strongly dependent of deposition parameters. The construction of a simple and cheap PLD system that is suitable for growing various thin films, including magnetic materials, controlling some deposition parameters is presented. The design characteristics and construction are presented for each one of the devices that compose this PLD system. The equipment has the possibility of carrying out films deposition using up to five targets under controlled atmosphere and substrate temperature. The system also allows controlling the cool off sample time after growing up films at high temperatures. A wide range of relative speeds between target and substrate axial rotation can be externally controlled. With the configuration and the dimensions adopted in their construction, a PLD system of great experimental flexibility is achieved, at a very low cost regarding the commercial systems. To evaluate their performance and effectiveness, the deposition characteristics of a BaFe12O19 film on (0001) sapphire substrate is presented.

Share and Cite:

M. Oliva, C. Zandalazini, J. Ferrero and H. Bertorello, "Development of a Low Cost Pulsed Laser Deposition System for Thin Films Growth," Modern Instrumentation, Vol. 1 No. 4, 2012, pp. 41-48. doi: 10.4236/mi.2012.14006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. Yuan, H. L. Glass and L. R. Adkins, “Epitaxial Barium Hexaferrite on Sapphire by Sputter Deposition,” Applied Physics Letters, Vol. 53, No. 4, 1988, pp. 340-341.
[2] B. Y. Wong, X. Sui, D. E. Laughlin and M. H. Kryder, “Microstructural Investigations of Barium Ferrite Longitudinal Thin-Film Media,” Journal of Applied Physics, Vol. 75, No. 10, 1994, pp. 5966-5968. doi:10.1063/1.355527
[3] C. Surig, K. A. Hempel and D. Bonnenberg, “Formation and Microwave Absorption of Barium and Strontium Ferrite Prepared by Sol-Gel Technique,” Applied Physics Letters, Vol. 63, No. 20, 1993, pp. 2836-2838. doi:10.1063/1.110303
[4] J. D. Adam, S. V. Krishnaswamy, S. H. Talisa and K. C. Yoo, “Thin-Film Ferrites for Microwave and Millimeter-Wave Applications,” Journal of Magnetism and Magnetic Materials, Vol. 83, No. 1-3, 1990, pp. 419-424. doi:10.1016/0304-8853(90)90570-G
[5] J. J. Coleman, “Metalorganic Chemical Vapor Deposition for Optoelectronic Devices,” Proceedings of the IEEE, Vol. 85, No. 11, 1997, pp. 1715-1729. doi:10.1109/5.649647
[6] T. Frey, C. C. Chi, C. C. Tsuei, T. Shaw and F. Bozso, “Effect of Atomic Oxygen on the Initial Growth Mode in Thin Epitaxial Cuprate Films” Physical Review B, Vol. 49, No. 5, 1994, pp. 3483-3491. doi:10.1103/PhysRevB.49.3483
[7] P. R. Wilmott and J. R. Huber, “Pulsed Laser Vaporization and Deposition”, Reviews of Modern Physics, Vol. 72, No. 1, 2000, pp. 315-328. doi:10.1103/RevModPhys.72.315
[8] S. Metev, “Pulsed Laser Deposition of Thin Films,” In: D. Chrisey and G. Hubler, Eds., Process Characteristics and Film Properties in Pulsed Laser Plasma Deposition, Wiley, New York, 1994, p. 255.
[9] K. H. Wu, J. Y. Juang., C. L. Lee, T. C, Lai, T. M. Uen, Y. S. Gou, S. L. Tu, S. J. Yang and S. E. Hsu, “Optimization of Depositier Ablation Plumes Measured by Fast Intensified Charge Coupled Device Photographs,” Nuclear Instruments and Methods in Physics, Vol. 116, No. 3-4, 1996, pp. 257-261.
[10] D. Baüerle, “Laser Processing and Chemistry”, 3rd Edition, Springer, Berlin, 2000.
[11] S. Fähler, M. Störmer and H. U. Krebs, “Origin and Avoidance of Droplets During Laser Ablation of Metals” Applied Surface Science, Vol. 109-110, 1997, pp. 433-436.
doi:10.1016/S0169-4332(96)00782-9
[12] M. I. Oliva, F. A. Soria1, C. I. Zandalazini, C. A. Rinaldi and J. C. Ferrero, “Spectroscopic Study of the Pulsed Laser Ablation on Ba/Sr Ferrites,” Anales Asosciación Física Argentina, Vol. 19, 2007, p. 79.
[13] T. García, P. Bartolo-Pérez, E. de Posada, J. L. Peña and M. Villagrán-Muniz, “Studies of Pulsed Laser Deposition Processes of BaTiO3 Thin Films,” Surface and Coatings Technology, Vol. 201, No. 6, 2006, pp. 3621-3624. doi:10.1016/j.surfcoat.2006.08.117
[14] C. H. Lei, “The Growth of BaTiO3 Films on (001) MgAl2O4 Substrates by Pulsed Laser Deposition Technique,” Thin Solid Films, Vol. 515, No. 4, 2006, pp. 1701-1707. doi:10.1016/j.tsf.2006.06.006
[15] C. Viespe, I. Nicolae, C. Sima, C. Grigoritu and R. Medianu, “ITO Thin Films Deposited by Advanced Pulsed Laser Deposition,” Thin Solid Films, Vol. 515, No. 24, 2007, pp. 8771-8775. doi:10.1016/j.tsf.2007.03.167
[16] A. Husmann, M. Mertin, T. Klotzbücher and E. W. Kreutz, “Deposition of BaTiO3 Thin Films by a Hybrid DC-Field Enhanced PLD-Process,” Applied Surface Science,Vol. 109-110, 1997, pp. 293-298. doi:10.1016/S0169-4332(96)00624-1
[17] P. Vase, Y. Q. Shen, T. Holst, M. Hagensen and T. Freltoft, “Substrate Heater for Large Area YBa2Cu3Ox Films Growth without Electrical Feedthroughs,” Physica C: Superconductivity, Vol. 235-240, No. 1, 1994, pp. 641- 642.
[18] K. H. Wu, C. L. Lee, J. Y. Juang, T. M. Uen and Y. S. Gou, “In situ Growth of Y1Ba2Cu307-8 Superconducting Thin Films Using a Pulsed Neodymium: Yttrium Aluminum Garnet Laser with CO2 Laser Heated Substrates,” Applied Physics Letters, Vol. 58, No. 10, 1991, pp. 1089-1091. doi:10.1063/1.104380
[19] J. C. Clark, J. P. Maria, K. J. Hubbard and D. G. Schlom, “An Oxygen-Compatible Radiant Substrate Heater for Thin Film Growth at Substrate Temperatures Up to 1050 °C,” Revew of Scientific Instruments, Vol. 68, No. 6, 1997, pp. 2538-2541. doi:10.1063/1.1148156
[20] X. Y. Zhang, C. K. Ong, S. Y. Xu and H. C. Fang, “Observation of Growth Morphology in Pulsed-Laser Deposited Barium Ferrite Thin Films,” Applied Surface Science, Vol. 143, 1999, pp. 323-327. doi:10.1016/S0169-4332(99)00100-2
[21] R. K. Singh, L. Ganapathi, P. Tiwari and J. Narayan, “Effect of Processing Geometry in Oxygen Incorporation and in situ Formation of YBa2Cu3O7 Superconducting Thin Films by Pulsed Laser Evaporation Technique,” Applied Physics Letters, Vol. 55, No. 22, 1989, pp. 2351-2353.
doi:10.1063/1.102364
[22] X. Y. Zhang, C. K. Ong, S. Y. Xu and Z. Yang, “Barium Ferrite Films with In-Plane Orientation Grown on Silicon by Pulsed Laser Deposition,” Journal of Magnetism and Magnetic Materials, Vol. 190, No. 3, 1998, pp. 171-175. doi:10.1016/S0304-8853(98)00303-5
[23] Y. Chen and M. H. Kryder, “Temperature Dependent Magnetic Properties of Barium-Ferrite Thin-Film Recording Media,” IEEE Transactions on Magnetics, Vol. 34, No. 3, 1998, pp. 729-742.
doi:10.1109/20.668078

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.