CFD Simulation of Scale Influence on the Hydrodynamics of an Internal Loop Airlift Reactor

Abstract

In this work, the overall gas hold-up in the riser and down-comer of three internal airlift reactors with a working volume of 10.5, 32 and 200 l at the range of temperatures 18℃ - 21℃, under atmospheric pressure was simulated using Com-putational Fluid Dynamics (CFD). The range of superficial gas velocity was 0.5 - 3 cm/s. The three reactors geometrically were similar to each other. CFD simulation and experimental data showed that the gas hold-up in the riser and down-comer increased by increasing the reactor scale. It was concluded that the simulated data were in good agreement with the experimental ones obtained from the literature.

Share and Cite:

R. Davarnejad, E. Bagheripoor and A. Sahraei, "CFD Simulation of Scale Influence on the Hydrodynamics of an Internal Loop Airlift Reactor," Engineering, Vol. 4 No. 10, 2012, pp. 668-674. doi: 10.4236/eng.2012.410085.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Bla?ej, M. Ki?a and J. Marko?, “Scale Influence on the Hydrodynamics of an Internal Loop Airlift Reactor,” Chemical Engineering and Processing, Vol. 43, No. 12, 2004, pp. 1519-1527. Hdoi:10.1016/j.cep.2004.02.003
[2] Z. Deng, T. Wang, N. Zhang and Z. Wang, “Gas Holdup, Bubble Behavior and Mass Transfer in a 5 m High Internal-Loop Airlift Reactor with Non-Newtonian Fluid,” Chemical Engineering Journal, Vol. 160, No. 1-2, 2010, pp. 729-737.
[3] M. Yoshimoto, S. Suenaga, K. Furumoto, K. Fukunaga and K. Nakao, “Gas-Liquid Interfacial Area, Bubble Size and Liquid-Phase Mass Transfer Coefficient in a ThreePhase External Loop Airlift Bubble Column,” Chemical and Biochemical Engineering Quarterly, Vol. 21, No. 4, 2007, pp. 365-372.
[4] J. A. Orejas, “Modeling and simulation of a BubbleColumn Reactor with External Loop: Application to the Direct Chlorination of Ethylene,” Chemical Engineering Science, Vol. 54, No. 21, 1999, pp. 5299-5309. Hdoi:10.1016/S0009-2509(99)00254-7
[5] M. A. Márquez, R. J. Amend, R. G. Carbonell, A. E. Sáez and G. W. Roberts, “Hydrodynamics of Gas-Lift Reactors with a Fast, Liquid-Phase Reaction,” Chemical Engineering Science, Vol. 54, No. 13-14, 1999, pp. 2263-2271. Hdoi:10.1016/S0009-2509(98)00351-0
[6] R. J. G. M. Van der Lans, “Hydrodynamics of a Bubble Column Loop Reactor,” Ph.D. Thesis, Delft University of Technology, Delft, 1985.
[7] E. Camarasa, E. Carvalho, L. A. C. Meleiro, R. MacielFilho, A. Domingues, G. Wild, S. Poncin, N. Midoux and J. Bouillard, “Development of a Complete Model for an Air-Lift Reactor,” Chemical Engineering Science, Vol. 56, No. 2, 2001, pp. 493-502. Hdoi:10.1016/S0009-2509(00)00253-0
[8] Y. Chisti, “Airlift Bioreactors,” Elsevier, London, 1989.
[9] M. Trager, G. N. Qazi, U. Onfen and C. L. Chopra, “Comparison of Airlift and Stirred Reactors for Fermentation with Aspergillusniger,” Journal Fermentation Bioengineering, Vol. 68, No. 10, 1989, pp. 112-116. Hdoi:10.1016/0922-338X(89)90058-5
[10] Y. S. Park, N. Ohta and M. Okabe, “Effect of Dissolved Oxygen Concentration and Impeller Tip Speed on Itaconic Acid Production by Aspergillusterreus,” Biotechnology Letters, Vol. 15, No. 6, 1993, pp. 583-586. Hdoi:10.1007/BF00138544
[11] B. Sajjadi, M. K. Moraveji and R. Davarnejad, “Investigation of Bubble Diameter and Flow Regime between Water and Dilute Aqueous Ethanol Solutions in an Airlift Reactor,” Frontiers of Chemical Science and Engineering, Vol. 5, No. 2, 2011, pp. 194-202. Hdoi:10.1007/s11705-010-1019-2
[12] J. B. Joshi, V. V. Ranade, S. D. Gharat and S. S. Lele, “Sparged Loop Reactors,” Canadian Journal Chemical Engineering, Vol. 68, No. 5, 1990, pp. 705-716. Hdoi:10.1002/cjce.5450680501
[13] J. C. Merchuk, G. Osemberg, M. Siegel and M. Shacham, “A Method for Evaluation of Mass Transfer Coefficients in the Different Regions of Airlift Reactors,” Chemical Engineering Science, Vol. 47, No. 9-11, 1992, pp. 35173525. Hdoi:10.1016/0009-2509(92)87038-R
[14] A. B. Russel, C. R. Thomas and M. D. Lilly, “The Influence of Height and Top-Section Size on the Hydrodynamic Characteristics of Airlift Fermentors,” Biotechnology and Bioengineering, Vol. 43, No. 1, 1994, pp. 69-76. Hdoi:10.1002/bit.260430110
[15] M. Siegel and J. C. Merchuk, “Hydrodynamics in Rectangular Airlift Reactors, Scale-Up and the Influence of Gas-Liquid Separator Design,” Canadian Journal Chemical Engineering, Vol. 69, No. 2, 1991, pp. 465-473. Hdoi:10.1002/cjce.5450690210
[16] J. C. Merchuk and R. Younger, “The Role of Gas-Liquid Separator of Airlift Reactors in the Mixing Process,” Chemical Engineering Science, Vol. 45, No. 9, 1990, pp. 2973-2975. Hdoi:10.1016/0009-2509(90)80191-G
[17] M. M. Siegel and J. C. Merchuk, “Mass Transfer in Airlift Reactors: Effects of Gas Recirculation,” In: J. W. Moody and P. B. Baker, Eds., Bioreactors and Biotransformation, Elsevier, London, 1987, p. 350.
[18] M. Siegel, J. C. Merchuk and K. Schugerl, “Air-Lift Reactor Analysis: Interrelationships between Riser, DownComer, and Gas-Liquid Separator Behavior, including Gas Recirculation Effects,” AIChE Journal, Vol. 32, No. 10, 1986, pp. 1585-1596. Hdoi:10.1002/aic.690321002
[19] Y. Bando, H. Hayakawa and M. Nakamura, “Effect of Equipment Dimensions on Liquid Mixing Time of Bubble Column with Draft Tube,” Journal Chemical Engineering Japan, Vol. 31, No. 5, 1998, pp. 765-770. Hdoi:10.1252/jcej.31.765
[20] J. C. Merchuk, N. Ladwa, A. Cameron, M. Bulmer and A. Picket, “Concentric-Tube Airlift Reactors: Effects of Geometrical Design on Performance,” AIChE Journal, Vol. 40, No. 7, 1994, pp. 1105-1117. Hdoi:10.1002/aic.690400703
[21] H. Blenke, “Loop Reactors,” Advances in Biochemical Engineering/Biotechnology, Vol. 13, 1979, pp. 121-214. Hdoi:10.1007/3540094687_8
[22] T. J. Lin and P. C. Chen, “Studies on Hydrodynamics of an Internal-Loop Airlift Reactor in Gas Entrainment Regime by Particle Image Analyzer,” Chemical Engineering Journal, Vol. 108, No. 1-2, 2005, pp. 69-79. Hdoi:10.1016/j.cej.2005.01.001
[23] Y. Kawase and M. Moo-Young, “Hydrodynamics in Bubble Column Bioreactors with Fermentation Broths Having a Yield Stress,” Applied Microbial and Biotechnology, Vol. 30, No. 6, 1989, pp. 596-603. Hdoi:10.1007/BF00255365
[24] J. J. Heijnen, J. Hols, R. J. G. M. van der Lans, H. L. J. M. van Leeuwen, A. Mulder and R. Weltevrede, “A Simple Hydrodynamic Model for the Liquid Circulation Velocity in a Full-Scale Twoand Three-Phase Internal Airlift Reactor Operating in the Gas Recirculation Regime,” Chemical Engineering Science, Vol. 52, No. 15, 1997, pp. 2527-2540. Hdoi:10.1016/S0009-2509(97)00070-5
[25] M. Siegel and J. C. Merchuk, “Hydrodynamics in Rectangular Airlift Reactors, Scale-Up and the Influence of Gas-Liquid Separator Design,” Canadian Journal of Chemical Engineering, Vol. 69, No. 2, 1991, pp. 465-473. Hdoi:10.1002/cjce.5450690210
[26] T.-J. Lin and P.-C. Chen, “Studies on Hydrodynamics of an Internal-Loop Airlift Reactor in Gas Entrainment Regime by Particle Image Analyzer,” Chemical Engineering Journal, Vol. 108, No. 1-2, 2005, pp. 69-79. Hdoi:10.1016/j.cej.2005.01.001
[27] M. Tobajas, M. Siegel and S. A. Apitz, “Influence of geometry and solid concentration on the hydrodynamics and mass transfer of a rectangular airlift reactor for marine sediment and soil bioremediation,” Chemical Engineering Journal, Vol. 77, 1999, pp. 660-669.
[28] C. Freitas and J. A. Teixeira, “Hydrodynamic Studies in an Air-Lift Reactor with Enlarged Degassing Zone,” Bioprocess and Biosystems Engineering, Vol. 18, No. 4, 1998, pp. 267-279. Hdoi:10.1007/s004490050441
[29] A. A. Vicent and J. A. Teixeira, “Hydrodynamic Performance of Three-Phase Airlift Bioreactors with Enlarged Degassing Zone,” Bioprocess and Biosystems Engineering, Vol. 14, No. 1, 1995, pp. 17-22. Hdoi:10.1007/BF00369848
[30] P. M. Kilonzo, A. Margaritis, M. A. Bergougnou, J. T. Yu and Y. Qin, “Influenceof the Baffle Clearance Design on Hydrodynamics of a Two Riser Rectangular Airlift Reactor with Inverse Loop and Expanded Gas-Liquid Separator,” Chemical Engineering Journal, Vol. 121, No. 1, 2006, pp. 17-26. Hdoi:10.1016/j.cej.2006.05.003
[31] E. Molina, A. Contreras and Y. Chisti, “Gas Holdup, Liquid Velocity and Mixing Behavior of Viscous Newtonian Media in a Split-Cylinder Airlift Bioreactor,” Trans IChemE, Vol. 77, 1999, pp. 27-32.
[32] S. Wachi, A. G. Jones and T. P. Elson, “Flow Dynamic in Draft Tube Bubble Column Using Various Liquid,” Chemical Engineering Science, Vol. 46, No. 2, 1991, pp. 657-663. Hdoi:10.1016/0009-2509(91)80026-U
[33] J. Philip, J. M. Proctor, K. Niranjan and J. F. Davidson, “Gas Holdup and Liquid Circulation in Internal Loop Reactors Containing Highly Viscous Newtonian and Non-Newtonian Liquids,” Chemical Engineering Science, Vol. 45, No. 3, 1990, pp. 651-664. Hdoi:10.1016/0009-2509(90)87008-G
[34] K. Koide, H. Sato and S. Iwamoto, “Gas Holdup and Volumetric Liquid-Phase Mass Transfer Coefficient in Bubble Column with Draught Tube and with Gas Dispersion into Annulus,” Journal of Chemical Engineering of Japan, Vol. 16, No. 5, 1983, pp. 413-419. Hdoi:10.1252/jcej.16.413
[35] M. E. Abashar, U. Narsingh, A. E. Rouillard and R. Judd, “Hydrodynamic Flow Regimes, Gas Hold-Up, and Liquid Circulation in Airlift Reactors,” Industrial & Engineering Chemistry Research, Vol. 37, No. 4, 1998, pp. 1251-1259. Hdoi:10.1021/ie9704612
[36] I. M. ?ija?ki, R. R. ?olovi?, D. Lj. Petrovi?, M. N. Teki? and M. S. ?uri?, “Diluted Alcohol Solutions in Bubble Columns and Draft Tube Airlift Reactors with a Single Orifice Sparger: Experiments and Simple Correlations,” Journal Chemical Technology and Biotechnology, Vol. 85, No. 1, 2010, pp. 39-49. Hdoi:10.1002/jctb.2266
[37] B. Albijani?, V. Havran, D. Lj. Petrovi?, M. ?uri? and M. N. Teki?, “Hydrodynamics and Mass Transfer in a Draft Tube Airlift Reactor with Dilute Alcohol Solutions,” AIChE Journal, Vol. 53, No. 11, 2007, pp. 2897-2904. Hdoi:10.1002/aic.11306
[38] M. K. Moraveji, B. Sajjadi and R. Davarnejad, “CFD Simulation of Hold-Up and Liquid Circulation Velocity in a Membrane Airlift Reactor,” Theoretical Foundations of Chemical Engineering, Vol. 46, No. 3, 2012, pp. 266273. Hdoi:10.1134/S0040579512020078
[39] M. K. Moraveji, B. Sajjadi, M. Jafarkhani and R. Davarnejad, “Experimental Investigation and CFD Simulation of Turbulence Effect on Hydrodynamic and Mass Transfer in a Packed Bed Airlift Internal Loop Reactor,” International Communications in Heat and Mass Transfer, Vol. 38, No. 4, 2011, pp. 518-524. Hdoi:10.1016/j.icheatmasstransfer.2010.12.033
[40] M. K. Moraveji, E. Ghaderi and R. Davarnejad, “Effective Parameters Consideration in Ohmic Heating Process in Two Phase Static System of Bio-Particle-Liquid,” International Journal of Food Engineering, Vol. 7, No. 1, 2011, pp. 1-17.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.