A Magnetic Model for Low/Hard States Associated with Jets in Black Hole X-Ray Binaries

Abstract

A model for the low/hard (LH) state associated with a steady jet in black hole X-ray binaries (BHXBs) is proposed based on disc-corona model with open magnetic fields trapped in magnetic patches, which arises from ‘flux expulsion’ effect of convective turbulence. We fit the spectral profiles of the LH state for the BHXBs, 4U 1543-475, GX 339-4, XTE J1550-564 and GRO J1655-40, and fit the relation between jet power and X-ray luminosity dynamically in the LH state by adjusting accretion rate and the outer boundary of the corona over the disc.

Share and Cite:

D. Wang, J. Wang, Z. Gan and C. Huang, "A Magnetic Model for Low/Hard States Associated with Jets in Black Hole X-Ray Binaries," International Journal of Astronomy and Astrophysics, Vol. 2 No. 3, 2012, pp. 156-166. doi: 10.4236/ijaa.2012.23019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. M. Belloni, “Black-hole transients: From QPOs to relativistic jets,” Advances in Space Research, Volume 38, p. 2801-2804. doi:10.1016/j.asr.2005.10.048
[2] J. E. McClintock, R. A. Remillard, “Black hole binaries,” In: Walter Lewin and Michiel van der Klis., Ed., Compact stellar X-ray sources, Cambridge Astrophysics Series, No. 39. Cambridge, UK: Cambridge University Press, 2006, p. 157 – 213.
[3] A. A. Esin, J. E. McClintock, R. Narayan, “Advec-tion-dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova MUSCAE 1991,” The Astrophysical Journal, Vol. 489, 1997, p.865. doi:10.1086/304829
[4] A. Esin, R. Narayan, W. Cui, J. E. Grove, S.-N. Zhang, “Spectral Transitions in Cygnus X-1 and Other Black Hole X-Ray Binaries,” The Astrophysical Journal, Vol. 505, 1998, pp. 854-868. doi:10.1086/306186
[5] C. Done, M. Gierlinski, A. Kubota, “Modelling the beha-viour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask,” The Astronomy and Astrophysics Review, Vol. 15, 2007, pp.1-66. doi:10.1007/s00159-007-0006-1
[6] J. M. Miller, J. Homan, G. Miniutti, “A Prominent Accre-tion Disk in the Low-Hard State of the Black Hole Can-didate SWIFT J1753.5-0127,” The Astrophysical Journal Letters, Vol. 652, 2006, pp. L113-L116. doi:10.1086/510015
[7] J. M. Miller, et al. “A Long, Hard Look at the Low/Hard State in Accreting Black Holes,” The Astrophysical Journal, Vol. 653, 2006, pp. 525-535. doi:10.1086/508644
[8] R. C. Reis, J. M. Miller, A. C. Fabian, “Thermal emission from the stellar-mass black hole binary XTE J1118+480 in the low/hard state,” Monthly Notices of the Royal As-tronomical Society: Letters, Vol. 395, 2009, pp. L52-L56. doi:10.1111/j.1745-3933.2009.00640.x
[9] R. C. Reis, A. C. Fabian, J. M. Miller, “Black hole accre-tion discs in the canonical low-hard state,” Monthly Notices of the Royal Astronomical Society, Volume 402, 2010, pp. 836-854. doi:10.1111/j.1365-2966.2009.15976.x
[10] J. Contopoulos, “A Simple Type of Magnetically Driven Jets: an Astrophysical Plasma Gun,” The Astrophysical Journal, Vol. 450, 1995, p.616. doi:10.1086/176170
[11] I. Contopoulos, D. Kazanas, “A Cosmic Battery,” The Astrophysical Journal, Vol. 508, 1998, pp. 859-863. doi:10.1086/306426
[12] D. Lynden-Bell, “Magnetic collimation by accretion discs of quasars and stars,” Monthly Notices of the Royal As-tronomical Society, Vol. 279, 1996, pp. 389-401.
[13] G. S. Bisnovatyi-Kogan, A. A. Ruzmaikin, “The accretion of matter by a collapsing star in the presence of a magnetic field. II - Selfconsistent stationary picture,” Astrophysics and Space Science, Vol. 42, 1976, p. 401-424. doi:10.1007/BF01225967
[14] R. D. Blandford, D. G. Payne, “Hydromagnetic flows from accretion discs and the production of radio jets,” Monthly Notices of the Royal Astronomical Society, Vol. 199, 1982, p. 883-903.
[15] M. Livio, “Astrophysical spouts: The jet set,” Nature, Vol. 417, 2002, pp. 125.
[16] H. C. Spruit, “Theory of Magnetically Powered Jets,” In: The Jet Paradigm, Lecture Notes in Physics, Vol. 794, Springer-Verlag Berlin Heidelberg, 2010, p. 233. (ar-Xiv:0804.3096) doi:10.1007/978-3-540-76937-8_9
[17] Z.-M. Gan, D.-X. Wang, W.-H. Lei, “A model of mag-netically induced disc-corona for black hole binaries,” Monthly Notices of the Royal Astronomical Society, Vol. 394, 2009, pp. 2310-2320. doi:10.1111/j.1365-2966.2009.14518.x
[18] C.-Y. Huang, Z.-M. Gan, J.-Z. Wang, D.-X. Wang, “A resonance model with magnetic connection for 3:2 HFQPO pairs in black hole binaries,” Monthly Notices of the Royal Astronomical Society, Vol. 403, 2010, pp. 1978-1982. doi:10.1111/j.1365-2966.2009.16237.x
[19] A. Merloni, A. C. Fabian, “Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes?” Monthly Notices of the Royal Astronomical Society, Vol. 332, 2002, pp. 165-175. doi:10.1046/j.1365-8711.2002.05288.x
[20] H. C. Spruit, D. A. Uzdensky, “Magnetic Flux Captured by an Accretion Disk,” The Astrophysical Journal, Vol. 629, 2005, pp. 960-968. doi:10.1086/431454
[21] Ya. B. Zeldovich, “The Magnetic Field in the Two-dimensional Motion of a Conducting Turbulent Liq-uid,” JETP, Vol. 31, 1956, p. 154-156.(Sov. Phys. JETP 4, 460-462, 1957)
[22] E. N. Parker, “A Kinematical Theory of Turbulent Hy-dromagnetic Fields,” The Astrophysical Journal, Vol. 138, 1963, p.226. doi:10.1086/147629
[23] S. A. Balbus, J. F. Hawley, “A powerful local shear in-stability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution,” The Astrophysical Journal, Vol. 376, 1991, p. 214-233. doi:10.1086/170270
[24] J. M. Bardeen, W. H. Press, S. A. Teukolsky, “Rotating Black Holes: Locally Nonrotating Frames, Energy Ex-traction, and Scalar Synchrotron Radiation,” The Astro-physical Journal, Vol. 178, 1972, pp. 347-370.doi:10.1086/151796
[25] B.-F. Liu, S. Mineshige, K. Shibata, “A Simple Model for a Magnetic Reconnection-heated Corona,” The Astro-physical Journal Letters, Vol. 572, 2002, pp. L173-L176. doi:10.1086/341877
[26] N. La Palombara, S. Mereghetti, “XMM-Newton obser-vation of 4U 1543-475: The X-ray spectrum of a stel-lar-mass black-hole at low luminosity,” Astronomy and Astrophysics, Vol. 430,2005, p.L53-L56. doi:10.1051/0004-6361:200400123
[27] R. P. Fender, E. Gallo, D. Rusell, “No evidence for black hole spin powering of jets in X-ray binaries,” Monthly Notices of the Royal Astronomical Society, Vol. 406, 2010, pp. 1425-1434. doi:10.1111/j.1365-2966.2010.16754.x
[28] R. I. Hynes, D. Steeghs, J. Casares, P. A. Charles, K. O’Brien, “Dynamical Evidence for a Black Hole in GX 339-4,” The Astrophysical Journal Letters, Vol. 583, 2003, pp. L95-L98. doi:10.1086/368108
[29] A. A. Zdziarski, J. Poutanen, J. Miko?ajewska, M. Gier-linski, K. Ebisawa, W. N. Johnson, “A spectral decompo-sition of the variable optical, ultraviolet and X-ray conti-nuum of NGC 5548,” Monthly Notices of the Royal As-tronomical Society, Vol. 301, 1998, pp. 179-192. doi:10.1046/j.1365-8711.1998.02015.x
[30] J. M. Miller, et al. “Initial Measurements of Black Hole Spin in GX 339-4 from Suzaku Spectroscopy,” The As-trophysical Journal Letters, Vol. 679, 2008, pp. L113-L116. doi:10.1086/589446
[31] M. Kolehmainen, C. Done, “Limits on spin determination from disc spectral fitting in GX 339-4,” Monthly Notices of the Royal Astronomical Society, Vol. 406, 2010, pp. 2206-2212. doi:10.1111/j.1365-2966.2010.16835.x
[32] R. Shafee, et al. “Estimating the Spin of Stellar-Mass Black Holes by Spectral Fitting of the X-Ray Continuum,” The Astrophysical Journal Letters, Vol. 636, 2006, pp. L113-L116. doi:10.1086/498938
[33] S. J. Tingay, et al. “Relativistic motion in a nearby bright X-ray source,” Nature, Vol. 374, 1995, pp. 141-143.doi:10.1038/374141a0
[34] C. D. Bailyn, J. A. Orosz, J. E. McClintock and R. A. Remillard, “Dynamical evidence for a black hole in the eclipsing X-ray nova GRO J1655 – 40,” Nature, Vol. 378, 1995, pp. 157-159. doi: 10.1038/378157a0
[35] J. A. Orosz, et al. “Dynamical Evidence for a Black Hole in the Microquasar XTE J1550-564,” The Astrophysical Journal, Vol. 568, 2002, pp. 845-861. doi:10.1086/338984
[36] J. Greiner, J. G. Cuby, M. J. McCaughrean, “An un-usually massive stellar black hole in the Galaxy,” Nature, Vol. 414, 2001, pp. 522-525.
[37] R. P. Fender, E. Gallo, P. Jonker, “Jet-dominated states: an alternative to advection across black hole event horizons in `quiescent' X-ray binaries,” Monthly Notice of the Royal Astronomical Society, Vol. 343, 2003, pp. L99-L103. doi:10.1046/j.1365-8711.2003.06950.x
[38] R. P. Fender, T. M. Belloni, E. Gallo, “Towards a unified model for black hole X-ray binary jets,” Monthly Notices of the Royal Astronomical Society, Vol. 355, 2004, pp. 1105-1118. doi:10.1111/j.1365-2966.2004.08384.x
[39] J. Malzac, A. Merloni, A. C. Fabian, “Jet-disc coupling through a common energy reservoir in the black hole XTE J1118+480,” Monthly Notices of the Royal Astronomical Society, Vol. 351, 2004, pp. 253-264. doi:10.1111/j.1365-2966.2004.07772.x
[40] S. Miyamoto, S. Kitamoto, K. Hayahida, W. Egoshi, “Large hysteretic behavior of stellar black hole candidate X-ray binaries,” The Astrophysical Journal Letters, Vol. 442, no. 1, 1995, p. L13-L16. doi:10.1086/187804
[41] T. M. Belloni, “The Jet Paradigm,” In: The Jet Paradigm: From Microquasars to Quasars, Lecture Notes in Physics, Vol. 794. Springer-Verlag Berlin Heidelberg, 2010, p. 53. doi:10.1007/978-3-540-76937-8
[42] A. L. King, et al. “An Extreme X-Ray Disk Wind in the Black Hole Candidate IGR J17091-3624,” The Astro-physical Journal Letters, Vol. 746, 2012, L20. doi:10.1088/2041-8205/746/2/L20
[43] F. Yuan, J. Lin, Wu Kinwah, C. Ho Luis, “A magnetohy-drodynamical model for the formation of episodic jets,” Monthly Notices of the Royal Astronomical Society, Vol. 395, 2009, pp. 2183-2188. doi:10.1111/j.1365-2966.2009.14673.x
[44] R. D. Blandford, R. L. Znajek, “Electromagnetic extraction of energy from Kerr black holes,” Monthly Notices of the Royal Astronomical Society, Vol. 179, 1977, p. 433-456.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.