Infrared Spectroscopy and Thermal Stability Studies of Natural Rubber-Barium Ferrite Composites

Abstract

Natural rubber (NR)-barium ferrite (BaF) composites (RFCs) have been prepared. Structural features of the composites were characterized by Infrared spectroscopy and scanning electron microscope (SEM). Differential scanning calorimetry (DSC) analysis showed that there is small variation of glass transition temperature (≈ –1℃). The activation energy of glass transition was calculated by Kissinger method and has values between (53-110 kJ/mol). Thermodynamic parameters such as activated entropy, enthalpy and Gibbs free energy were calculated for glass transition also. Thermogravimetric analysis TG and its derivative DTG showed one stage thermal decomposition between 300℃-400℃ with weight loss between (19.47%-52.13%). Increasing barium ferrite loading will increase the thermal stability of natural rubber. The kinetic parameters such as activation energy, entropy, enthalpy and Gibbs free energy for composites in the decomposition region were calculated and analyzed using Coats-Redfern technique.

Share and Cite:

K. H. Mahmoud and M. H. Makled, "Infrared Spectroscopy and Thermal Stability Studies of Natural Rubber-Barium Ferrite Composites," Advances in Chemical Engineering and Science, Vol. 2 No. 3, 2012, pp. 350-358. doi: 10.4236/aces.2012.23041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. E. El-Nashar, S. H. Mansour and E. Girgis, “Nickel and Iron Nano-Particles in Natural Rubber Composites,” Journal of Materials Science, Vol. 41, No. 2, 2006, pp. 5359-5364. doi:10.1007/s10853-006-0179-4
[2] M. H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M. K. El-Mansy and K. Moric, “Magnetic and Dynamic Mechanical Properties of Barium Ferrite-Natural Rubber Composites,” Journal of Material Processing Technology, Vol. 160, No. 2, 2005, pp. 229-233. doi:10.1016/j.jmatprotec.2004.06.013
[3] E. C. Milke, M. Rei, J. P. de Souze and L. Schaeffer, “Powder Injection Molded Strontium-Ferrite Magnets,” International Journal of Powder Metallurgy, Vol. 37, No. 5, 2001, pp. 47-51.
[4] J. U. Otaigbe, H. S. Kim and J. Xiao, “Effect of Coupling Agent and Filler Particle Size on Melt Rheology of Polymer-Bonded Nd-Fe-B Magnets,” Polymer Composites, Vol. 20, No. 5, 1999, pp. 697-704. doi:10.1002/pc.10393
[5] J. Xiao and J. U. Otaigbe, “Polymer Bonded Magnets. II. Effect of Liquid Crystal Polymer and Surface Modification on Magneto-Mechanical Properties,” Polymer Composites, Vol. 21, No. 2, 2000, pp. 332-342. doi:10.1002/pc.10190
[6] M. A. Solomon, P. Kurian, P. A. Joy and M. R. Anantharaman, “Processability and Magnetic Properties of Rubber Ferrite Composites Containing Barium Ferrite,” International Journal of Polymeric Material, Vol. 53, 2004, pp. 565-575.
[7] M. A. Solomon, P. Kurian, M. R. Anantharaman and P. A. Joy, “Evaluation of the Magnetic and Mechanical Properties of Rubber Ferrite Composites Containing Strontium Ferrite,” Polymer Plastic Technology and Engineering, Vol. 43, No. 4, 2004, pp. 1013-1028. doi:10.1081/PPT-120038602
[8] D. R. Saini, V. M. Nadkarni, P. D. Grover and K. D. P. Nigam, “Dynamic Mechanical, Electrical and Magnetic Properties of Ferrite Filled Styrene-Isoprene-Styrene,” Journal of Material Science, Vol. 21, No. 10, 1986, pp. 3710-3716. doi:10.1007/BF02403026
[9] M. A. Solomon, P. Kurian, M. R. Anantharaman and P. A. Joy, “Cure Characteristics and Dielectric Properties of Magnetic Composites Containing Strontium Ferrit,” Journal of Elastomers and Plastics, Vol. 37, No. 2, 2005, pp. 109-121. doi:10.1177/0095244305046488
[10] M. H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M. K. El-Mansy and K. Morii, “Effect of Particle Size and Its Distribution on the Fabrication and Magnetic Properties of Barium Ferrite Powders Prepared from Coprecipitated Precursors,” Journal of the Ceramic Society of Japan, Vol. 112, No. 1304, 2004, pp. 200-203. doi:10.2109/jcersj.112.200
[11] J. Xiao and J. U. Otaigbe, “Polymer-Bonded Magnets: Part I. Analytic Thermogrvimetry to Determine the Effect of Surface Modification on Dispersion of Nd-Fe-B Filler,” Journal of Materials Research, Vol. 14, No. 7, 1999, pp. 2893-3896. doi:10.1557/JMR.1999.0386
[12] R. D. Waldrons, “The Infrared Spectra of Ferrites,” Physics Review, Vol. 99, No. 6, 1955, pp. 1727-1735. doi:10.1103/PhysRev.99.1727
[13] M. A. Mousa and M. A. Ahmed, “Electrical Conduction in γ-Irradiated and Unirradiated Zinc-Iron Ferrites,” Chemistry and Material Science, Vol. 23, No. 9, 1988, pp. 3083-3087. doi:10.1007/BF00551277
[14] O. S. Josyulu and Sobhanadri, “The Far-Infrared Spectra of Some Mixed Cobalt Zinc and Magnesium Zinc Ferrites,” Physica Status Solidi (a), Vol. 65, No. 2, 1981, pp. 479-483. doi:10.1002/pssa.2210650209
[15] J. Preudhomme and P. Tarae, “Infrared Studies of Spinels: III: The Normal II-III Spinels,” Spectrochim Acta Part A, Vol. 27, No. 9, 1971, pp. 1817-1835.
[16] D. W. Brazier, “Applications of Thermal Analytical Procedures in the Study of Elastomers and Elastomer Systems,” Rubber Chemistry and Technology, Vol. 53, No. 3, 1980, pp. 437-512. doi:10.5254/1.3535051
[17] A. D. Falco, S. Goyanes, G. H. Rubiolo, I. Mondrayon and A. Marzocca, “Carbon Nanotubes as Reinforcement of Styrene-Butadiene Rubber,” Applied Surface Science, Vol. 254, No. 1, 2007, pp. 262-265. doi:10.1016/j.apsusc.2007.07.049
[18] M. H. Makled, Y. Washiya, H. Tsuda and T. Matsui, “Effect of Coprecipitated Barium Ferrite on the Cure Characteristics and Dynamic Properties of Natural Rubber-Ferrite Composites around Percolation,” Journal of Applied Polymer Science, Vol. 113, No. 5, 2009, pp. 3294-3299. doi:10.1002/app.30263
[19] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. doi:10.1021/ac60131a045
[20] R. P. Wang, C. J. Zha, A. V. Rode, S. J. Madden and B. Luther-Davies, “Thermal Characterization of Ge-As-Se Glasses by Differential Scanning Calorimetry,” Journal of Materials Science: Materials Electronics, Vol. 18, No. 1, 2007, pp. 419-422.
[21] B. Boonchom and S. Puttawong, “Thermodynamics and Kinetics of the Dehydration Reaction of FePO4 2H2O,” Physica B, Vol. 405, No. 9, 2010, pp. 2350-2355. doi:10.1016/j.physb.2010.02.046
[22] L. Vlaev, N. Nedelchev, K. Gyurova and M. Zagorcheva, “A Comparative Study of Non-Isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate,” Journal of Analytical and applied Pyrolysis, Vol. 81, No.2, 2008, pp. 253-262. doi:10.1016/j.jaap.2007.12.003
[23] L. C. S. de Oliveira, E. J. de Arruda, R. B.da Costa, P. S. Goncalves and A. E. Job, “Evaluation of Thermal Behavior of Latex Membranes from Genetically Improved Rubber Tree (Hevea Brasiliensis),” Thermochimica Acta, Vol. 445, No. 1, 2006, pp. 27-31. doi:10.1016/j.tca.2006.03.027
[24] L. Slusarski and G. Janowska, “The Effect of the Network Structure of the Thermal Properties of Cis-1,4-Polyisoprene Vulcanizates,” Journal of Thermal Analytical and Calorimetry, Vol. 29, No. 1, 1984, pp. 95-104. doi:10.1007/BF02069944
[25] A. W. Coats and J. P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, Vol. 201, No. 4914, 1964, pp. 68-69. doi:10.1038/201068a0
[26] F. Yakuphanoglu, A. O. Gorgulu and A. Cukurovali, “An Organic Semiconductor and Conduction Mechanism: N-[5-methyl-1,3,4-tiyodiazole-2-yl] Ditiyocarbamate Compound,” Physica B, Vol. 353, No. 3-4, 2004, pp. 223-229. doi:10.1016/j.physb.2004.09.099

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.