Share This Article:

Complexation of Eugenol (EG), as Main Component of Clove Oil and as Pure Compound, with β- and HP-β-CDs

Abstract Full-Text HTML Download Download as PDF (Size:348KB) PP. 716-723
DOI: 10.4236/fns.2012.36097    5,825 Downloads   9,395 Views   Citations


Eugenol, both in its pure form (EG) and included in essential clove oil (CO) was successfully solubilized in aqueous solution by forming inclusion complexes with β-cyclodextrins (β-CDs) and its modified hydroxy-propyl-β-CDs (HP-β-CDs). To investigate the molecular association between β-CDs/HP-β-CDs with pure EG and essential CO, phase solubility studies were undertaken. Essential CO formed insoluble complexes with β-CDs, but not with HP-β-CDs. The work clearly demonstrates complexes formation follow an order higher than 1:1 when high essential CO and β-CDs concentrations were used, however it was 1:1 in the case of essential CO-HP-β-CDs complexes. When pure EG was studied the results indicated that EG could form 1:1 inclusion complexes with β-CDs and HP-β-CDs. Based on the studies, the Kc values for pure EG were 4555 ± 225 M-1 and 10,633 ± 614 M-1 for β-CDs and HP-β-CDs, respectively, and 2005 ± 199 M-1 for essential CO-HP-β-CDs. These finding indicate that CDs are suitable for encapsulating EG.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Hernández-Sánchez, S. López-Miranda, C. Lucas-Abellán and E. Núñez-Delicado, "Complexation of Eugenol (EG), as Main Component of Clove Oil and as Pure Compound, with β- and HP-β-CDs," Food and Nutrition Sciences, Vol. 3 No. 6, 2012, pp. 716-723. doi: 10.4236/fns.2012.36097.


[1] S. N. Ebrahimi, J. Hadian, M. H. Mirjalili, A. Sonboli and M. Yousefzadi, “Essential oil Composition and Antibacterial Activity of Thymes caramanicus at Different Phonological Stages,” Food Chemistry, Vol. 110, 2008, pp. 927-931. doi:10.1016/j.foodchem.2008.02.083
[2] R. Schmid. “A Resolution of the Eugenia-Syzygium Controversy (Myrtaceae),” American Journal of Botany, Vol. 59, No. 4, 1972, pp. 423-436. doi:10.2307/2441553
[3] L. A. Shelef, “Antimicrobial Effects of Spices,” Journal Food Safety, Vol. 6, 1983, pp. 29-44. doi:10.1111/j.1745-4565.1984.tb00477.x
[4] C.G. Soto and Burhanuddin, “Clove Oil as Fish Anaesthesic for Measuring Length and Weight of Rabbit Fish (Siganus lineatus),” Aquaculture, Vol. 136, No. 1-2, 1995, pp. 149-152. doi:10.1016/0044-8486(95)01051-3
[5] J. L. Ackerman and D. R. Bellwood, “Comparative Efficiency of Clove Oil vs Rotenone for Sampling Tropical Reef Fish Assemblages,” Journal Fish Biology, Vol. 60, 2002, pp. 893-901. doi:10.1111/j.1095-8649.2002.tb02416.x
[6] G. N. Wagner, T. D. Singer and M. McKinley, “The Ability of Clove Oil and MS-222 to Minimize Handling Stress in Rainbow Trout (Oncohynchus mykiss Walbaum),” Aquaculture Research, Vol. 34, No. 13, 2003, pp. 1139-1146. doi:10.1046/j.1365-2109.2003.00916.x
[7] P. Hoskonen and J. Pirhonen, “The Effect of Clove Oil Sedation on Oxygen Consumption of Six Temperate-Zone Fish Species,” Aquaculture Research, Vol. 35, No. 10, 2004, pp. 1002-1005. doi:10.1111/j.1365-2109.2004.01084.x
[8] R. Roubach, L. C. Gómez, F. A. Fonesca and A. L. Val, “Eugenol as an Efficacious Anaesthesic for Tambaqui, Colosoma macropomum (Cuvier),” Aquaculture Research, Vol. 36, 2005, pp. 1056-1061. doi:10.1111/j.1365-2109.2005.01319.x
[9] T. Atsumi, I. Iwaka, S. Fujisawa and T. Ueha, “Reactive Oxygen Species Generation and Photo-Cytotoxicity of Eugenol in Solutions of Various pH,” Biomaterials, Vol. 22, No. 12, 2001, pp. 1459-1466. doi:10.1016/S0142-9612(00)00267-2
[10] S. Fujisawa, T. Atsumi, Y. Kadoma and H. Sakagami, “Antioxidant and Prooxidant Action of Eugenol Related Compounds and Their Toxicity,” Toxicology, Vol. 177, No. 1, 2002, pp. 39-54. doi:10.1016/S0300-483X(02)00194-4
[11] M. Ito, K. Murakami and M. Yoshino, “Antioxidant Action of Eugenol Compound: Role of Mental Ion in the Inhibition of Lipid Peroxidation,” Food Chemistry Toxicology, Vol. 43, 2005, pp. 461-466. doi:10.1016/j.fct.2004.11.019
[12] J. L. Briozzo, J. Chirife, L. Herzage and M. Dáquino, “Antimicrobial Activity of Clove Oil Dispersed in a Concentrated Sugar Solution,” Journal of Applied Bacteriology, Vol. 66, 1989, pp. 69-75. doi:10.1111/j.1365-2672.1989.tb02456.x
[13] I. Gül?in, M. Elmastas and H. Y. Aboul-Enein, “Antioxidant Activity of Clove Oil: A Powerful Antioxidant Source,” Arabian Journal Chemistry, in Press.
[14] V. Mouchrek, “Analytical Studies and Chemical Modifications by Methylation and Acetylation of Eugenol of Essential Oil Extracted from the Leaves of Pimenta Dioica Lindl,” PhD Thesis, Universidade S?o Paulo, S?o Paulo, 2000.
[15] A. Ozturz and H. Ozbek, “The Anti-Inflamatory Activity of Eugenia Caryophyllata Essential Oils: An Animal Model of Anti-Inflammatory Activity,” European Journal of General Medicine, Vol. 2, 2005, pp. 159-163.
[16] K. H. Son, S. Y. Kwon, H. P. Kim, H.W. Chang and S. S. Kang, “Constituents of Syzigium Aromaticum Merr et Perry,” Journal of natural Products, Vol. 4, 1998, pp. 263-267.
[17] T. Ohakubo and M. Shibata, “The Selective Capsaicin Receptor Antagonist Capsazepine Abolishes the Anticonceptive Actions of Eugenol and Guaiacol,” Journal of Dental Research, Vol. 76, 1997, pp. 848-851. doi:10.1177/00220345970760040501
[18] H. C. Ou, F. P. Chou, T. M. Lin, C. H. Yang and W. H. Sheu, “Protective Effects of Eugenol Against Oxidized LDL-Induced Cytotoxicity and Adhesion Molecule Expression in Endothelial Cells,” Food Chemistry Toxicology, Vol. 44, 2006, pp. 1485-1495. doi:10.1016/j.fct.2006.04.011
[19] G. M. Laeckeman, L. V. Hoof, A. Haemers, D. A. Vandem and A. G. Herman, “Eugenol: A Valuable Compound for in Vitro Experimental Research and Worthwhile for Further in Vivo Investigation,” Phytoterapy Research, Vol. 4, 2006, pp. 90-96. doi:10.1002/ptr.2650040304
[20] D. Kalemba and A. Kunicka, “Antibacterial and Antifungical Properties of Essentials Oils,” Current Medicinal Chemistry, Vol. 10, No. 10, 2003, pp. 813-829. doi:10.2174/0929867033457719
[21] Y. Cai, S. H Gaffney, T. H. Lilley, D. Magnolato, R. Martin, C. M. Spencer and E. Haslam, “Polyphenol Interactions, Part 4: Model Studies with Caffeine and Cyclodextrins,” Journal of the American Chemical Society, Vol. 2, 1990, pp. 2197-2209.
[22] S. Divakar and M. M. Maheswaran, “Structural Studies on Inclusion Compounds of β-Cyclodextrins with Some Substitued Phenols,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, Vol. 27, No. 2, 1997, pp. 113-126. doi:10.1023/A:1007949215051
[23] Y. Yang and L. X. Song, “Study on the Inclusion Compounds of Eugenol with α-, β-, γ and Heptakis (2,6-di-O-methyl) β-Cyclodextrins,” Journal Inclusion Phenomenom Macrocyclic Chemistry, Vol. 53, 2005, pp. 27-33. doi:10.1007/s10847-005-0247-4
[24] H. Zhan, Z. Jiang, Y. R. Wang and T. Dong, “Molecular Microcapsules and Inclusion Interactions of Eugenol with β-Cyclodextrins and Its Derivatives,” European Food Research Technology, Vol. 227, 2008, pp. 1507-1513. doi:10.1007/s00217-008-0873-3
[25] M. J. Choi, A. Soottitantawat, O. Nuchuchua, S. G. Min and U. Ruktanonchai, “Physical and Light Oxidative Properties of Eugenol Encapsulated by Molecular Inclusion and Emulsion-Diffusion Method,” Food Research International, Vol. 42, No. 1, 2009, pp. 149-156. doi:10.1016/j.foodres.2008.09.011
[26] T. Higuchi and K. A. Connors, “Phase Solubility Techniques,” Advances in Analitical Chemistry Instrument, Vol. 4, 1965, pp. 56-63.
[27] D. J. Grant and T. Higuchi, “Solubility Behaviour of Organics Compounds. Techniques of Chemistry,” Wiley Interscience Publication 21, New York, 1990.
[28] K. J. Waleczek, H. M. Cabral-Marques, B. Hempel and P. C. Schmidt, “Phase Solubility Studies of Pure α-Bisabolol and Camomile Essential oil with β-Cyclodextrins,” European Journal Pharmacia Biopharmacia, Vol. 55, 2002, pp. 247-251. doi:10.1016/S0939-6411(02)00166-2
[29] K. A. Connors, “Binding Constants,” Wiley, New York, 1987, pp. 103-108.
[30] J. H. Benesi-Hildebrant, “A Spectrophotometric Investigation on the Interaction on the Interaction of Iodine with Aromatic Hydrocarbons,” Journal of the American Chemical Society, Vol. 71, No. 8, 1949, pp. 2703-2707. doi:10.1021/ja01176a030
[31] A. Garg, B. Gupta, R. Prekash and S. Singh, “Preparation and Characterization of Hydroxypropyl-b-cyclodextrins (HP-β-CD) Inclusion Complex of Eugenol: Differential Pulse Voltammetry and HNMR,” Chemical Pharmacollogy bulletin, Vol. 58, 2010, pp. 1313-1319.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.