Use of Perovskite-Type Lanthanum Nickelate Synthesized by the Polymeric Precursor Method in the Steam Reforming Reaction of Methane

Abstract

In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.

Share and Cite:

D. M. H. Martinelli, D. M. A. Melo, A. M. Garrido Pedrosa, A. E. Martinelli, M. A. de F. Melo, M. K. S. Batista and R. C. Bitencourt, "Use of Perovskite-Type Lanthanum Nickelate Synthesized by the Polymeric Precursor Method in the Steam Reforming Reaction of Methane," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 363-368. doi: 10.4236/msa.2012.36052.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Spinicci, A. Tofanari, M. Faticanti, I. Pettiti and P. Porta, “Hexane Total Oxidation on LaMO3 (M = Mn, Co, Fe) Perovskite-Type Oxides,” Journal of Molecular Catalysis A: Chemical, Vol. 176, No. 1-2, 2001, pp. 247-252. doi:10.1016/S1381-1169(01)00264-3
[2] A. K. Azada, S.-G. Eriksson, S. A. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen and H. Rundl?f, “Synthesis, Structural and Magnetic Characterisation of the Double Perovskite A2MnMoO6 (A=Ba, Sr),” Journal of Alloys and Compounds, Vol. 364, No. 1-2, 2004, pp. 77-82. doi:10.1016/S0925-8388(03)00611-X
[3] A. M. G. Pedrosa, M. J. B. Souza, B. A. Marinkovic, D. M. A. Melo and A. S. Araujo, “Structure and Properties of Bifunctional Catalysts Based on Zirconia Modified by Tungsten Oxide Obtained by Polymeric Precursor Method,” Applied Catalysis A: General, Vol. 342, No. 1-2, 2008, pp. 56-62. doi:10.1016/j.apcata.2007.12.036
[4] G. R. O. Silva, J. C. Santos, D. M. H. Martinelli, A. M. G. Pedrosa, M. J. B. Souza, D. M. A. Melo, “Synthesis and Characterization of LaNixCo1-xO3 Perovskites via Complex Precursor Methods,” Materials Sciences and Applications, Vol. 1, No. 2, 2010, pp 39-45. doi:10.4236/msa.2010.12008
[5] J. N. Armor, “The Multiples Roles for Catalysis in the Production of H2,” Applied Catalysis A: General, Vol. 176, No. 2, 1999, pp. 159-176. doi:10.1016/S0926-860X(98)00244-0
[6] L. G. Tejuca, J. L. G. Fierro and J. M. D. Tascon, “Structure and Reactivity of Perovskite-Type Oxides,” Advances in Catalasis, Vol. 36, No. 2, 1989, pp. 237-328. doi:10.1016/S0360-0564(08)60019-X
[7] M. A. Maurera, A. G. Souza, L. E. B. Soledade, F. M. Pontes, E. Longo, E. R. Leite and J. A. Varela, “Microstructural and Optical Characterization of CaWO4 and SrWO4 Thin Films Prepared by a Chemical Solution Method,” Materials Letters, Vol. 58, No. 5, 2004, pp. 727-732. doi:10.1016/j.matlet.2003.07.002
[8] T. Nitadori and M. Misono, “Catalytic Properties of La1?xA′xFeO3(A′ = Sr, Ce) and La1?xCexCoO3,” Journal Catalysis, Vol. 93, No. 2, 1985, pp. 459-466. doi:10.1016/0021-9517(85)90193-9
[9] H. Tanaka and M. Misono, “Advances in Designing Perovskite Catalysts,” Current Opinion in Solid State and Materials Science, Vol. 5, No. 5, 2001, pp. 381-387. doi:10.1016/S1359-0286(01)00035-3
[10] N. Yamazoe and Y. Teraoka. “Oxidation Catalysis of Perovskites—Relationships to Bulk Structure and Composition (valency, defect, etc.),” Catalalis Today, Vol. 8, No. 3, 1990, pp. 175-199. doi:10.1016/0920-5861(90)87017-W
[11] D. Klvana, J. Vaillancourt, J. Kirchnerova and J. Chaouki, “Combustion of Methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4Co0.6O3 Prepared by Freeze-Drying,” Applied Catalysis A: General, Vol. 109, No. 2, 1994, pp. 181-193. doi:10.1016/0926-860X(94)80117-7
[12] K. Kleveland, M. A. Einarsrud and T. Grande, “Sintering of LaCoO3 Based Ceramics,” Journal of the European Ceramic Society, Vol. 20, No. 2, 2000, pp. 185-193 doi:10.1016/S0955-2219(99)00141-7
[13] J. D. G. Fernandes, D. M. A. Melo, A. M. G. Pedrosa, M. J. B. Souza, D. K. S. Gomes and A. S. Araujo, “Synthesis and Catalytic Properties of Lanthanum Nickelate Perovskite Materials,” Reaction Kinetics and Catalysis, Letters, Vol. 84, No. 1, 2005, pp. 3-9.
[14] A. M. G. Pedrosa, D. M. A. Melo, M. J. B. Souza, A. O. S. Silva and A. S. Araujo, “Effect of Cerium, Holmium and Samarium Ions on the Thermal and Structural Properties of the HZSM-12 Zeolite,” Journal of Thermal Analysis and Calorimetry, Vol. 84, No. 2, 2006, pp. 503-509. doi:10.1007/s10973-005-6911-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.