Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer

Abstract

The copolymer poly(D,L-lactide-co-glycolide) is one of the most interesting polymers for medical applications. This interest is justified by the fact that it is bioreabsorbable, biocompatible and non-toxic, while its degradation kinetics can be modified by the copolymerization ratio of the monomers. In this study, copolymers were synthesised at 175?C by opening the rings of the cyclic dimers of the D,L-lactide and glycolide monomers in the presence of stannous octoate initiator and lauryl alcohol co-initiator. The application of vacuum to the reaction medium, coupled with adequate stirring, is essential for obtaining good results. The following analytical techniques were used to characterise the synthesised copolymers: Differential Scanning Calorimetry (DSC), Thermogravimetry (TG), Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Both the input monomers and the reaction products were analysed. Important characteristics, such as melting temperature, glass transition temperature, thermal stability, chemical composition and the ratio of the monomers in the synthesised copolymer, were obtained from these analyses. These results helped to infer the absence of residual monomers in the synthesised copolymers.

Share and Cite:

C. D’Avila Carvalho Erbetta, R. José Alves, J. Magalhães Resende, R. Fernando de Souza Freitas and R. Geraldo de Sousa, "Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 208-225. doi: 10.4236/jbnb.2012.32027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. Y. Galaev and B. Mattiasson, “Smart Polymers and What They Could Do in Biotechnology and Medicine,” Trends in Biotechnology, Vol. 17, No. 8, 1999, pp. 335- 340. doi:10.1016/S0167-7799(99)01345-1
[2] O. Pillail and R. Panchagnula, “Polymers in Drug Delivery,” Current Opinion in Chemical Biology, Vol. 5, No. 4, 2001, pp. 447-451. doi:10.1016/S1367-5931(00)00227-1
[3] S. Li, “Hydrolytic Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids,” Journal of Biomedical Materials Research, Vol. 48, No. 3, 1999, pp. 342-53. doi:10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7
[4] A. S. Hoffman, “Hydrogels for Biomedical Application,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 3-12. doi:10.1016/S0169-409X(01)00239-3
[5] R. Chera and R. Rustgi, “Biodegradable Polymers,” Progress in Polymer Science, Vol. 23, No. 7, 1998, pp. 1273- 1335. doi:10.1016/S0079-6700(97)00039-7
[6] O. Seigo, “Application of Superabsorbent Polymers in Japanese Agriculture and Greening, Gels Handbook,” Academic Press, Waltham, 2001.
[7] R. Langer and N. A. Peppas, “Advances in Biomaterials, Drug Delivery, and Bion-anotechnology,” AlChE Journal, Vol. 49, No. 12, 2003, pp. 2990-3006. doi:10.1002/aic.690491202
[8] M. Chasin and R. Langer, “Biodegradable Polymers as Drug Delivery Systems,” McGraw-Hill, New York, 1990.
[9] C. E. Soma, C. Dubernet, D. Bentolila, S. Benita and P. Couvreur, “Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Cyclosporin A in Polyalkyl-cyanoacrylate Nanoparticles,” Biomaterials, Vol. 21, No. 1, 2000, pp. 1-7. doi:10.1016/S0142-9612(99)00125-8
[10] R. A. Jain, “The Manufacturing Techniques of Various Drug Loaded Biodegradable Poly(Lactide-Co-Glycolide) (PLGA) Devices,” Biomaterials, Vol. 21, No. 23, 2000, pp. 2475-2490. doi:10.1016/S0142-9612(00)00115-0
[11] V. Michel, “Polymeric Biomaterials: Strategies of the Past vs. Strategies of the Future,” Progress in Polymer Science, Vol. 32, No. 8-9, 2007, pp. 755-761. doi:10.1016/j.progpolymsci.2007.05.006
[12] L. Xiaoling and R. J. Haskara, “Design of Controlled Release Drug Delivery Systems,” MacGraw-Hill, New York, 2006.
[13] N. Angelova and D. Hunkeler, “Rationalizing the Design of Polymeric Biomaterials,” Trends in Biotechnology, Vol. 17, No. 10, 1999, pp. 409-421. doi:10.1016/S0167-7799(99)01356-6
[14] M. M. M. El-nashar, “Review Article: Immobilized Mole- cules Using Biomaterials and Nanobiotechnology,” Jour- nal of Bio-materials and Nanobiotechnology, Vol. 1, No. 1, 2010, pp. 61-77. doi:10.4236/jbnb.2010.11008
[15] A. Q. Soares, L. F. Oliveira, D. Rabelo and A. R. Souza, “Polímeros Biodegradáveis: Novas Perspectivas Para as Ciências Farmacêuticas,” Revista Eletr?nica de Farmácia, Vol. 2, No. 2, 2005, pp. 202-205.
[16] M. L. Hans and A. M. Lowman, “Biodegradable Nanoparticles for Drug Delivery and Targeting,” Current Opinion in Solid State and Materials Science, Vol. 6, No. 4, 2002, pp. 319-327. doi:10.1016/S1359-0286(02)00117-1
[17] Q. Cai, G. Shi, J. Bei and S. Wang, “Enzymatic Degradation Behavior and Mechanism of Poly(Lactide-Co-Glycolide) Foams by Trypsin,” International Journal of Pharmaceutics, Vol. 24, No. 4, 2003, pp. 629-638.
[18] J. Lunt, “Large-scale Production, Properties and Commercial Applications of Polylactic Acid Polymers,” Polymer Degradation and Stability, Vol. 59, No. 1-3, 1998, pp. 145-152. doi:10.1016/S0141-3910(97)00148-1
[19] H. Fukuzaki, M. Yoshida, M. Asano and M. Kumakura, “Synthesis of copoly(D,L-Lactic Acid) with Relatively Low Molecular Weight and in Vivo Degradation,” European Polymer Journal, Vol. 25, No. 10, 1989, pp. 1019-1026. doi:10.1016/0014-3057(89)90131-6
[20] D. K. Gilding and A. M. Reed, “Biodegradable Polymers for Use in Surgery Polyglycolid/Poly(Lactic Acid) Homo and Copolymers,” Polymer, Vol. 20, No. 12, 1979, pp. 1459-1464. doi:10.1016/0032-3861(79)90009-0
[21] D. Bendix, “Chemical Synthesis of Polylactide and Its Copolymers for Medical Applications,” Polymer Degradation and Stability, Vol. 59, No. 1-3, 1998, pp. 129-135. doi:10.1016/S0141-3910(97)00149-3
[22] P. B. Deasy, M. P. Finan and M. J. Meegan, “Preparation and Characterization of Lactic/Glycolic Acid Polymers and Copolymers,” Journal of Microencapsulation, Vol. 6, No. 3, 1989, pp. 369-378.
[23] C. Jé?me and P. Lecomte, “Recent Advances in the Synthesis of Aliphatic Polyesters by Ring-Opening Polym- erization,” Advanced Drug Delivery Reviews, Vol. 60, No. 9, 2008, pp. 1056-1076. doi:10.1016/j.addr.2008.02.008
[24] B. D. Ratner and A. S. Hoffman, “Biomaterials Science— An Introduction to Materials in Medicine,” Elsevier Academic Press, Waltham, 1996.
[25] M. J. Blanco-Prieto, E. Fattal, F. Puisieux and P. Couvreur, “The Multiple Emulsion as a Common Step for the Design of Polymeric Microparticles,” In: J. L. Grossiord and M. Seiller, Eds., Multiple emulsions: Structure, Properties and Applications, éditions de Santé, Paris, 1998, pp. 397-435.
[26] D. H Lewis, “Controlled Release of Bioactive Agents from Lactide/Glycolide Polymers,” In: M. Chasin and R. Langer, Eds., Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 1-41.
[27] S. L. Fialho, M. G. B. Rego, J. A. Cardillo, R. C. Siqueira, R. Jorge and A. S. Cunha Jr., “Implantes Biodegradáveis Destinados à Administra??o Intra-Ocular,” Arquivos Brasileiros de Oftalmologia, Vol. 66, No. 6, 2003, pp. 891- 896. doi:10.1590/S0004-27492003000700029
[28] A. Merkli, C. Tabatabay, R. Gurny and J. Heller, “Biodegradable Polymers for the Controlled Release of Ocular Drugs,” Progress in Polymer Science, Vol. 23, No. 3, 1998, pp. 563-580. doi:10.1016/S0079-6700(97)00048-8
[29] K. A. Athanasiou, G. G. Niederauer and C. M. Agrawal, “Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/Polyglycolic Acid Copolymers”, Biomaterials, Vol. 17, No. 2, 1996, pp. 93-102. doi:10.1016/0142-9612(96)85754-1
[30] M. Kiremit?i-Gümüsderelioglu and G. Deniz, “Synthesis, Characterization and in Vitro Degradation of Poly(D,L- Lactide)/Poly(D,L-Lactide-Co-Glycolide),” Turkish Journal of Chemistry, Vol. 23, No. 2, 1999, pp. 153-161.
[31] X. Kaitian, A. Kozluca, E. B. Denkbas and E. Piskin, “Poly(D,L-lactic acid) Homopolymers: Synthesis and Characterization,” Turkish Journal of Chemistry, Vol. 20, No. 1, 1996, pp. 43-53.
[32] E. Jabbari, E. Xuezhong, “Synthesis and Characterization of Bioresorbable in Situ Crosslinkable Ultra Low Molecular Weight Poly(Lactide) Macromere,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 1, 2008, pp. 311-317. doi:10.1007/s10856-006-0020-2
[33] V. Kumar and G. S. Banker, “Chemically-Modified Cellulosic Polymers,” Drug Development and Industrial Pharmacy, Vol. 19, No. 1, 1993, pp. 1-31.
[34] A. A. Silva Jr., J. R. Matos, T. P. Formariz, G. Rossanezi, M. V. Scarpa, E. S; T. Egito and A. G. Oliveira, “Thermal Behavior and Stability of Biodegradable Spray-Dried Microparticles Containing Triamcinolone,” International Journal of Pharmaceutics, Vol. 368, No. 1-2, 2009, pp. 45-55.
[35] R. Lindhardt, “Polímeros Biodegradáveis Para Libera??o Controlada de Droga,” Springer-Verlag, Now York, 1998.
[36] A. G. Hausberger and P. P. DeLuca, “Characterization of Biodegradable Poly(D,L-Lactide-Co-Glycolide) Polymers and Microparticles,” Journal of Pharmaceutical and Bio- medical Analysis, Vol. 13, No. 6, 1995, pp. 747-760. doi:10.1016/0731-7085(95)01276-Q
[37] N. B. Colthup, L. H. Daly and S. E. Wiberley, “Introduction to Infrared and Raman Spectroscopy,” 2nd Edition, Academic Press, New York, 1975.
[38] D. O. Hummel, “Atlas of Polymer and Plastics Analysis,” Wiley, New York, 2001.
[39] J. C. Middleton and A. J. Tipton, “Synthetic Biodegradable Polymers as Medical Devices,” Medical Plastics and Biomaterials Magazine, Vol. 3-4, 1998, pp. 31-38.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.