Electrochemical investigation on the film of L-cysteine self-assembled to nanoparticles on a gold electrode

Abstract

The film contained L-cysteine and gold nanoparticles were provided by self-assembled monolayers (SAMs) and potentiostatic electrodeposition technology on the gold electrode. Two methods were used to study the film: In the first, cyclic voltammetry (CV) was used to inspect the functional groups of the film and the same time hydroquinone was chosen to be a probe molecule in the based solution; secondly, based on analytical technology of scanning electrochemical microscopy (SECM), the heterogeneous rate constant (keff) between solid phase (the modified electrode) and liquid phase (K3Fe(CN)6) was obtained. As a result, the better binary catalysis of hydroquinone was demonstrated and the heterogeneous rate constant (keff) is the greater at 8 h for L-cysteine self-assembled monolayers (SAMs).

Share and Cite:

Wang, W. , Wang, C. and Lu, X. (2012) Electrochemical investigation on the film of L-cysteine self-assembled to nanoparticles on a gold electrode. Journal of Biophysical Chemistry, 3, 39-43. doi: 10.4236/jbpc.2012.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Liu, S.F., Li, X.H., Li, Y.C., Li, Y.F., Li, J.R. and Jiang, L. (2005) The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer. Electrochimica Acta, 51, 427-431. doi:10.1016/j.electacta.2005.04.038
[2] Xu, Q.M., Wan, L.J., Wang, C., Bai, C.L., Wang, Z.Y., Nozawa, T. (2001) New structure of l-cysteine self-assembled monolayer on Au(111): Studies by in situ scanning tunneling microscopy. Langmuir, 17, 6203-6206. doi:10.1021/la010670y
[3] Dakkouri, A.S., Kolb, D.M., Edelstein-Shima, R. and Mandler, D. (1996) Scanning tunneling microscopy study of l-cysteine on Au(111). Langmuir, 12, 2849-2852. doi:10.1021/la9510792
[4] Brolo, A.G., Germain, P. and Hager, G. (2002) Investigation of the adsorption of l-cysteine on a polycrystalline silver electrode by surface-enhanced raman scattering (SERS) and surface-enhanced second harmonic generation (SESHG). Journal of Physical Chemistry B, 106, 5982-5987. doi:10.1021/jp025650z
[5] Lu, X.Q., Zhang, L.M., Li, M.R., Wang, X.Q., Zhang, Y., Liu, X.H. and Zuo, G.F. (2006) Electrochemical characterization of self-assembled thiol-porphyrin monolayers on gold electrodes by SECM. ChemPhysChem, 7, 854-862. doi:10.1002/cphc.200500492
[6] Zhang, S. and Echegoyen, L. (2005) Selective response of dopamine in the presence of ascorbic acid on l-cysteine self-assembled gold electrode. Journal of the American Chemical Society, 127, 2006-2011. doi:10.1021/ja044411h
[7] Holt, K.B. (2006) Using scanning electrochemical microscopy (SECM) to measure the electron-transfer kinetics of cytochrome c Immobilized on a COOH-terminated alkanethiol monolayer on a gold electrode. Langmuir, 22, 4298-4304. doi:10.1021/la0529916
[8] Wang, W.T., Li, X.J., Wang, X.Y., Shang, H., Liu, X.H. and Lu, X.Q. (2010) Comparative electrochemical behaviors of a series of SH-terminated-functionalized porphyrins assembled on a gold electrode by scanning electrochemical microscopy (SECM). Journal of Physical Chemistry B, 114, 10436-10441. doi:10.1021/jp1026064
[9] Wan, Q.J. Yang, N.J., Zhang, H.L., Zou, X.P. and Xu, B. (2001) Voltammetric behavior of vitamin B2 on the gold electrode modified with a self-assembled monolayer of L-cysteine and its application for the determination of vitamin B2 using linear sweep stripping voltammetry. Talanta, 55, 459-467. doi:10.1016/S0039-9140(01)00437-4
[10] Hu, G.Z., Liu, Y.C., Zhao, J., Cui, S.Q., Yang, Z.S. and Zhang, Y.Z. (2006) Selective response of dopamine in the presence of ascorbic acid on l-cysteine self-assembled gold electrode. Bioelectrochem, 69, 254-257. doi:10.1016/j.bioelechem.2006.03.005
[11] Wang, S.F., Du, D. and Zou, Q.C. (2002) Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta, 57, 687-692. doi:10.1016/S0039-9140(02)00072-3
[12] Ji, X.B., Banks, C.E., Silvester, D.S., Wain, A.J. and Compton, R.G. (2007) Electrode kinetic studies of the hydroquinone-benzoquinone system and the reaction between hydroquinone and ammonia in propylene carbonate: Application to the indirect electroanalytical sensing of ammonia. Journal of Physical Chemistry C, 111, 1496- 1504. doi:10.1021/jp066704y
[13] Quan, M., Sanchez, D., Wasylkiw, M.F. and Smith, D.K. (2007) Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. Journal of the American Chemical Society, 129. 12847-12856. doi:10.1021/ja0743083
[14] Tamaki, T., Ito, T. and Yamaguchi, T. (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. Journal of Physical Chemistry B, 111, 10312- 10319.doi:10.1021/jp074334n
[15] Larsen, A.G. and Gothelf, K.V. (2005) Electrochemical properties of mixed self-assembled monolayers on gold electrodes containing mercaptooctylhydroquinone and alkylthiols. Langmuir, 21, 1015-1021. doi:10.1021/la048221w
[16] Liu, B., Bard, A.J., Mirkin, M.V. and Creager, S.E. (2004) Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy. Journal of the American Chemical Society, 126, 1485-1492. doi:10.1021/ja038611p
[17] Lu, X.Q., Nan, M.N., Zhang, H.R., Liu, X.H., Yuan, H.Q. and Yang, J.D. (2007) Investigation of the antioxidant property of ascorbic acid. Journal of Physical Chemistry C, 111, 14998-15002. doi:10.1021/jp072551i
[18] Bollo, S., Yanez, C., Sturm, J., Nunez-Vergara, L. and Squella, J.A. (2003) Cyclic voltammetric and scanning electrochemical microscopic study of thiolated β-cyclodextrin adsorbed on a gold electrode. Langmuir, 19, 3365-3370. doi:10.1021/la0267995
[19] Hu, X.Y., Xiao, Y. and Chen, H.Y. (1999) Adsorption characteristics of Fe3(CN)63?/4? on Au colloids as monolayer films on cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry, 466, 26-30. doi:10.1016/S0022-0728(99)00113-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.