Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles
R. K. Singhal, B. Gangadhar, H. Basu, V. Manisha, G.R. K. Naidu, A.V. R. Reddy
.
DOI: 10.4236/ajac.2012.31011   PDF    HTML     6,262 Downloads   12,001 Views   Citations

Abstract

In this study, iron nano-particles were used to remediate malathion contaminated soil in the concentration range of 1 - 10 μg?g–1. The zero valent iron nano-particles were prepared by reducing ferric chloride solution with sodium boro- hydride for remediation of the soil. The optimized quantity of iron nano particles was found to be 0.1 g?kg–1 of soil con- taminated with 10 μg?g–1 of malathion. Malathion was determined in the soil after leaching to water at pH 8.2 and fol- lowed by its oxidation with slight excess of N-bromosuccinimide (NBS). The unconsumed NBS was estimated by measuring the decrease in the color intensity of rhodamine B. Degradation product formed during the oxidation of ma-lathion by zero valent iron was monitored by the Attenuated Total Reflectance Fourier Transform Infrared Spectros- copy (ATR-FTIR). The results clearly showed that quantitative oxidation of malathion was achieved within eight min- utes after the addition of zero valent iron nano particles.

Share and Cite:

R. Singhal, B. Gangadhar, H. Basu, V. Manisha, G. Naidu and A. Reddy, "Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles," American Journal of Analytical Chemistry, Vol. 3 No. 1, 2012, pp. 76-82. doi: 10.4236/ajac.2012.31011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. P. Gibson and R. G Burns, “The Breakdown of Mala- thion in Soil and Soil Components,” Microbial Ecology, Vol. 3, No. 3, 1977, pp. 219-230. doi:10.1007/BF02010619
[2] C. A. Edwards, “Environmental Pollution by Pesticides,” Plenum Press, London, 1973, pp. 78-79.
[3] M. A. Gallo and N. J. Lawry, “Handbook of Pesti-cides Toxi- cology,” Academic: E.R. Laws Press, New York, 1991, pp. 3-10.
[4] R. E. Meye, “Chemistry of Hazardous Materials,” Prentice Hall, Inc., Englewood Cliffs, 1977, pp. 208-210.
[5] F. Derek, I. Laine and F. Cheng, “The Destruc-tion of Or- ganic Pollutants under Mild Reaction Conditions: A Re- view,” Microchemical Journal, Vol. 85, No. 2, 2007, pp. 183-193. doi:10.1016/j.microc.2006.07.002
[6] F. A. Patty, “Industrial Hygiene and Toxicology,” Vol. 2, Interscience Pub-lishers, New York, 1963, pp. 1950-1952
[7] B. Sunitha, A. Mathew, K. Pillai and V. K. Gupta, “A Rapid Spectrophotome-tric Assay of Some Organophosphorus Pesticide Residues in Vegetable Samples,” Spectrochimica Acta Part A, Vol. 67, No. 5, 2007, pp. 1430- 1432.
[8] A. W. Bourquin, “Degradation of Malathion by Salt- Marsh Microorganisms,” Applied and Environmental Microbiology, Vol. 33, No. 2, 1977, pp. 356-362.
[9] L. W. Getzin and I. Rosefield, “Organophos-phorus Insecticide Degradation by Heat Labile Substances in Soil,” Journal of Agricultural and Food Chemistry, Vol. 16, No. 4, 1968, pp. 598-601. doi:10.1021/jf60158a031
[10] S. Kumar, K. G. Mukerji and R Lal, “Molecular Aspects of Pesticide De-gradation by Microorganisms,” Critical Reviews in Microbiology, Vol. 22, No. 1, 1996, pp. 1-26. doi:10.3109/10408419609106454
[11] S. Xie, J. X. Liu, L. Li and C. L. Qiao, “Biodegradation of Malathion by Acinetobacter Johnsonii MA19 and Optimization of Cometabolism Sub-strates,” Journal of Environmental Sciences, Vol. 21, No. 1, 2009, pp. 76-82. doi:10.1016/S1001-0742(09)60014-0
[12] S. H. Joo, A. J. Feitz and T. D. Waite, “Oxidative Degradation of the Carbo-thioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron,” Environmental Science & Technology, Vol. 38, No. 7, 2004, pp. 2242-2247. doi:10.1021/es035157g
[13] H. M. Hung and M. R. Hoffmann, “Kinetics and Mechanism of the Enhanced Reductive Degrada-tion of CCl4 by Elemental Iron in the Presence of Ultrasound,” Environ- mental Science & Technology, Vol. 32, No. 19, 1998, pp. 3011-3016. doi:10.1021/es980273i
[14] W. X. Zhang, “Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, Vol. 5, No. 3-4, 2003, pp. 323-328. doi:10.1023/A:1025520116015
[15] F. Gilbert, P. Refait, F. Leveque, C. Remazeilles and E. Conforto, “Synthesis of Goethite from Fe(OH)2 Precipitates: Influence of Fe(II)Concentration and Stirring Speed,” Journal of Physics and Chemistry of Solids, Vol. 69, No. 8, 2008, pp. 2124-2130. doi:10.1016/j.jpcs.2008.03.010
[16] J. Cao, P. Clase and W. Zhang, “Nanoporous Zero-Valent Iron,” Journal of Materials Research, Vol. 20, No. 12, 2005, pp. 32-39. doi:10.1557/jmr.2005.0401
[17] R. K. Singhal, R. Karpe, K. P. Muthe and A. V. R. Reddy, Pu-239+240 Selectivity for Pseu-do-Colloids of Iron in Subsurface Aquatic Environment Having Elevated Level of Dissolved Organic Carbon,” Journal of Ra-dioanalytical and Nuclear Chemistry, Vol. 280, No. 1, 2009, pp. 141-148. doi:10.1007/s10967-008-7390-5
[18] R. M. Kura-kalva, R. Attinti and S. Kalluru, “Extractive Fluorimetric De-termination of Malathion Residues in Water,” Analyst, Vol. 125, No. 2, 2000, pp. 323-326. doi:10.1039/a904207e
[19] W. W. Walker and B. J. Stojanovic, “Microbial versus Chemical Degradation of Malathion in Soil,” Journal of Environmental Quality, Vol. 2, No. 2, 1973, pp. 229-232. doi:10.2134/jeq1973.00472425000200020012x
[20] C. Wang and W. X. Zhang, “Nanoscale Iron Particles for Reductive Dechlorination of PCE and PCBs,” Environ- mental Science & Technology, Vol. 31, No. 7, 1997, pp. 2154-2156. doi:10.1021/es970039c
[21] K. J. Cantrell, D. I. Kaplan and T. W. Wietsma, “Zerovalent Iron for the in Situ Remediation of Selected Metals in Groundwater,” Journal of Hazardous Mate-rials, Vol. 42, No. 2, 1995, pp. 201-212. doi:10.1016/0304-3894(95)00016-N
[22] N. L. Wolfe, R. G. Zepp, J. A. Gordon, G. L. Baughman, D. M. Cline, “Kinetics of Chemical Degradation of Malathion in Water,” Environmental Science & Technol- ogy, Vol. 11, No. 1, 1977, pp. 88-93. doi:10.1021/es60124a001
[23] M. Khanmohammadi, M. A. Karimi, K. Ghasemi, M. Jabbari and A. G. Bagheri, “Quantita-tive Determination of Malathion in Pesticide by Modified At-tenuated Total Reflectance-Fourier Transform Infrared Spectro-metry Applying Genetic Algorithm Wavelength Selection Me-thod,” Talanta, Vol. 72, No. 2, 2007, pp. 620-625. doi:10.1016/j.talanta.2006.11.029
[24] G. Quintas, S. Garrigue and M. de la Guardia, “FT-Ra- man Spectrometry Determination of Malathion in Pesticide Formulations,” Talanta, Vol. 63, No. 2, 2004, pp. 345-350. doi:10.1016/j.talanta.2003.11.004
[25] G. M. Quintás, A. Asunción, S. Sergio and M. D. L. G. Garrigues, “Fourier Transform Infrared Spectrometric Determination of Malathion in Pesticide Formulations,” Analytica Chimica Acta, Vol. 502, No. 2, 2004, pp. 213- 220. doi:10.1016/j.aca.2003.10.044

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.