Molecular Characterization of Pseudomonas spp. Isolated from Root Nodules of Various Leguminous Plants of Shekhawati Region, Rajasthan, India

Abstract

Plant growth promontory Pseudomonas strains were isolated from root nodules of five plant species, viz., Trifolium pretense, Cicer arietinum, Amaranthus polygamus, Vigna mungo, and Trigonella foenum; that plants were denizen of Shekhawati region of Rajasthan. A total of 8 bacterial isolates were evaluated for growth promotion using PGP properties. Partial 16S rDNA sequencing data showed that these 8 bacterial isolates belonged to genus Pseudomonas. MEGA 4.0.2, software was used to construct a neighbor joining tree by employing boot strap method. Result exhibited significant diversity among recovered Pseudomonas strains.

Share and Cite:

S. Issar, S. Sharma, D. Choudhary, H. Gautam and R. Gaur, "Molecular Characterization of Pseudomonas spp. Isolated from Root Nodules of Various Leguminous Plants of Shekhawati Region, Rajasthan, India," American Journal of Plant Sciences, Vol. 3 No. 1, 2012, pp. 60-63. doi: 10.4236/ajps.2012.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. C. Homer-Devine, K. M. Carney and B. J. M. Bohannan, “An Ecological Perspective on Bacterial Biodiversity,” Proceedings of the Royal Society of London, Vol. 271, 2004, pp. 113-122.
[2] X. Latour, T. Carberand, G. Lagurre, F. Alland and P. Lemanceu, “The Composition of Fluorescent Pseudomonad Population Associated with Roots Is Influenced by Plant and Soil Type,” Applied and Environmental Microbiology, Vol. 62, No. 7, 1996, pp. 2449-2456.
[3] J. W. Kloepper, R. Lifshiftz and R. M. Zablotowicz, “Free Living Bacterial Inocula for Enhancing Crop Productivity,” Trends in Biotechnology, Vol. 7, No. 2, 1989, pp. 39-44. doi:10.1016/0167-7799(89)90057-7
[4] A. Renwick, R. Campbell and S. Coc, “Assessment of in Vivo Screening Systems for Potential Biocontrol Agents of Gaeumannomces graminis,” Plant Pathology, Vol. 40, No. 4, 1991, pp. 524-532. doi:10.1111/j.1365-3059.1991.tb02415.x
[5] M. A. Flaishman, A. Eyal, C. Zilberstein, C. Voisard and D. Hass, “Suppression of Septoria tritici Blotch and Leaf Rust of Wheat by Recombinant Cyanide Producing Strains of Pseudomonas putida,” Molecular Plant-Microbe Interactions, Vol. 9, No. 7, 1996, pp. 642-645. doi:10.1094/MPMI-9-0642
[6] F. J. Gutierrez Manero, N. Acero, J. A. Lucas and A. Probanza, “The Influence of Native Rhizobacteria on European Alder [Alnus glutinosa (L.) Gaertan] Growth. II. Characterization of Growth Promoting and Growth Inhibiting Strains,” Plant and Soil, Vol. 182, No. 1, 1996, pp. 67-74.
[7] J. R. de Freitas, M. R. Banerjee and J. J. Germida, “Phosphate Solubilizing Rhizobacteria Enhance the Growth and Yield But Not Phosphorus Uptake of Canola (Brassica napus),” Biology and Fertility of Soils, Vol. 24, No. 4, 1997, pp. 358-364. doi:10.1007/s003740050258
[8] L. R. Kennedy, C. Pereg-Gerk, R. Wood, K. Deaker, K. Gilchrist and S. Katupitya, “Biological Nitrogen Fixation in Non Leguminous Field Crops: Facilitating the Evolution of an Effective Association between Azospirillum and Wheat,” Plant and Soil, Vol. 194, No. 1-2, 1997, pp. 65-79. doi:10.1023/A:1004260222528
[9] F. B. Holl, C. P. Chanway, R. Turkingon and R. Radley, “Growth Response of Crested Wheatgrass (Agropyron cristatum L.), White Clover (Trifolium repens L.) to Inoculation with Bacillus polymixa,” Soil Biology and Biochemistry, Vol. 20, No. 1, 1998, pp. 19-24.
[10] G. A. O’ Neill, R. A. Radley and C. P. Chanway, “Variable Effects of Emergence—Promoting Rhizobacteria on Conifer Seedling Growth under Nursery Conditions,” Biology and Fertility of Soils, Vol. 13, No. 1, 1992, pp. 45-49. doi:10.1007/BF00337237
[11] J. S?rensen, L. E. Jensen and O. Nybroe, “Soil and Rhizosphere as Habitats for Pseudomonas Inoculants: New Knowledge on Distribution, Activity and Physiological State Derived from Micro-Scale and Single-Cell Studies,” Plant and Soil, Vol. 232, No. 1-2, 2001, pp. 97-108.
[12] N. G. Rumjanek, M. C. C. Fonseca and G. R. Xavier, “Quorum Sensing Emsistemas Agrícolas: Comportamento Multicelular em Procariotos via Comunica??o Intercellular,” Biotecnologia ciência e desenvolvimento, Vol. 33, No. 1, 2004, pp. 35-50.
[13] M. N. Vincet, L. A. Harrison, J. M. Brackin, P. A. Kovacevich, P. Mukherji, D. M. Weller and E. A. Pierson, “Genetic Analysis of the Antifungal Activity of a Soilborne Pseudomonas aureofaciens Strain,” Applied and Environmental Microbiology, Vol. 57, No. 10, 1991, pp. 2928-2934.
[14] B. Schwyn and J. B. Neilands, “Universal Chemical Assay for Detection and Determination of Siderophores,” Analytical Biochemistry, Vol. 160, No. 2, 1987, pp. 40-47.
[15] S. A. Gordon and R. P. Weber, “Colorimetric Estimation of Indole Acetic Acid,” Plant Physiology, Vol. 26, No. 1 1951, pp. 192-195. doi:10.1104/pp.26.1.192
[16] H. John, J. Leaven, E. Steven and S. E. Lindow, “Utilization of Plant Hormones Indole 3 Acetic Acid for Growth by Pseudomonad putida Strain 1290,” Applied and Environmental Microbiology, Vol. 71, No. 5, 2005, pp. 2365-2371. doi:10.1128/AEM.71.5.2365-2371.2005
[17] W. G. Weisburg, S. M. Barns, D. A. Pelletier and D. J. Lane, “16S Ribosomal DNA Amplification for Phylogenetic Study,” Journal of Bacteriology, Vol. 173, No. 2, 1991, pp. 697-703.
[18] S. F. Altschul, T. L. Madden, A. A. Schaffer, Z. Zhang, W. Miller and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A New Generation of Protein Data Base,” Nucleic Acid Research, Vol. 25, No. 17, 1997, pp. 389-3402. doi:10.1093/nar/25.17.3389
[19] B. L. Maidack, J. R. Cole, T. G. Lilburn, C. T. J. Parker, P. R. Saxman, P. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje, “The RDP-II (Ribosomal Database Project),” Nucleic Acids Research, Vol. 29, No. 1, 2001, pp. 82-85.
[20] K. Goto, T. Omura, Y. Hara and Y. Sadaie, “Application of the Partial 16S rDNA Sequence as an Index for Rapid Identification of Species in the Genus Bacillus,” Journal of General Applied Microbiology, Vol. 46, No. 1, 2000, pp. 1-8. doi:10.2323/jgam.46.1
[21] Y. W. Tang, A. Von Graevenitz, M. G. Waddington, M. K. Hopkins, D. H. Smith, H. Li, C. P. Kolbert, S. O. Montbornery and D. H. Persing, “Identification of Coryneform Bacterial Isolates by Ribosomal DNA Sequence Analysis,” Journal of Clinical Microbiology, Vol. 38, No. 4, 2000, pp. 1676-1678.
[22] J. Baldus-Patel, D. G. B. Leonard, X. Pan, J. M. Musser, R. E. Berman and I. Nachamkin, “Sequence-Based Identification of Mycobacterium Species Using the Microseq 500, 16S rDNA Bacterial Identification System,” Journal of Clinical Microbiology, Vol. 38, No. 1, 2000, pp. 246-251.
[23] R. Trotha, T. Hanck, W. K?nig and B. K?nig, “Rapid Rebosequencing—An Effective Diagnostic Tool for Detecting Microbial Infection,” Infection, Vol. 29, No. 1 2001, pp. 12-16. doi:10.1007/s15010-001-0064-7
[24] H. Unnerstad, H. Ericsson, A. Alderborn, W. Tham, M. L. Danielsson-Tham and J. G. Mattsson, “Pyrosequencing as Method for Grouping of Listeria monocytogenes Strains on the Basis of Single Nucleotide Polymorphisms,” Applied and Environmental Microbiology, Vol. 67, No. 11, 2001, pp. 5339-5342. doi:10.1128/AEM.67.11.5339-5342.2001
[25] M. Drancourt, C. Bollet, A. Carlioz, R. Martelin, J.P. Gayral and D. Raoult, “16S Ribosomal Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates,” Journal of Clinical Microbiology, Vol. 38, No. 10, 2000, pp. 3623-3630.
[26] K. L. Simpson, B. Petterson and F. G. Priest, “Characterization of Iactobacilli from Scotch Malt-Whisky Distilleries and Description of Lactobacillus ferintoschensis sp. nov., a New Species Isolated from Malt Whisky Fermentations,” Microbiology, Vol. 147, No. 4, 2001, pp. 1007-1016
[27] J. C. Hunter-Cerva, “The Value of Microbial Diversity,” Current Opinion of Microbiology, Vol. 1, No. 3, 1998, pp. 278-285. doi:10.1016/S1369-5274(98)80030-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.