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Abstract 
Many preterm infants suffer from neural disorders caused by early birth 
complications. The detection of children with neurological risk is an impor-
tant challenge. The electroencephalogram is an important technique for es-
tablishing long-term neurological prognosis. Within this scope, the goal of 
this study is to propose an automatic detection of abnormal preterm babies’ 
electroencephalograms (EEG). A corpus of 316 neonatal EEG recordings of 
100 infants born after less than 35 weeks of gestation were preprocessed and a 
time series of standard deviation was computed. This time series was thre-
sholded to detect Inter Burst Intervals (IBI). Temporal features were ex-
tracted from bursts and IBI. Feature selection was carried out with classifica-
tion in one step so as to select the best combination of features in terms of 
classification performance. Two classifiers were tested: Multiple Linear Re-
gressions and Support Vector Machines (SVM). Performance was computed 
using cross validations. Methods were validated on a corpus of 100 infants 
with no serious brain damage. The Multiple Linear Regression method shows 
the best results with a sensitivity of 86.11% ± 10.01%, a specificity of 77.44% ± 
7.62% and an AUC (Area under the ROC curves) of 0.82 ± 0.04. An accurate 
detection of abnormal EEG for preterm infants is feasible. This study is a first 
step towards an automatic analysis of the premature brain, making it possible 
to lighten the physician’s workload in the future. 
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Preterm Infants, Support Vector Machines 

 

1. Introduction 

About 15 million newborns are born prematurely every year in the world [1]. 
Unfortunately, many of the surviving babies suffer from lifetime disabilities such 
as visual and auditory problems, attention difficulties, and learning problems, 
etc. To avoid these pathologies, it is essential to diagnose, prognose, and treat 
preterm born babies as early and as accurately as possible [2] [3]. Usually, 
preterm babies receive a sustained attention provided by neonatal intensive care 
units through brain magnetic resonance images, ultrasound assessment or EEG. 
Non-invasive EEG signals record electrical activity of the brain through 
electrodes placed along the scalp. EEG signals measure voltage fluctuations 
resulting from ionic current flows within the neurons of the brain. This 
technique gives precious information on the ongoing neurological status of a 
patient and remains a major diagnostic tool for neurology in many situations 
such as epilepsy, sleep disorders and coma [4]-[10]. As shown in Figure 1, for 
preterm infants, EEG is physiologically formed by an alternation of bursts of 
activity and periods of quiescence, called interburst intervals (IBI). The duration 
and the proportion of IBI vary according to the sleep stages; they are more 
prolonged in calm sleep. According to the term of birth, they are more 
prolonged for more premature babies. 

During the past four decades, several studies exploited preterm babies EEG to 
study neural disorders. Intensive studies focused on the neurological outcome of 
neonatal EEG [11]-[17]. Authors of [18] and [17] defined poor outcome as death 
or survival with neurodevelopment impairment and good outcome as survival 
without impairment. In [18], the authors evaluate the correlation between the 
characteristics of the amplitude-integrated EEG (aEEG), the cerebral ultrasound 
assessment and the further neurodevelopmental outcome at 3 years of age in 
premature infants born after less than 30 weeks of gestation. They conclude that 
 

 
Figure 1. An IBI example. 
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aEEG is an accurate method for establishing long-term neurological prognosis 
with sensitivities and specificities comparable to cerebral ultrasound assessment. 
In [17], the authors note a significant correlation between the long-term 
neurological prognosis of preterm infants and the IBI value measured from the 
aEEG in the first 3 days. More recently [19], a meta-analysis confirms the value 
of EEG in establishing long-term prognosis in premature infants. In everyday 
clinical practice, the EEG analysis is still done by visual analysis which leads to 
several difficulties. First, physicians used to analyse EEGs of very preterm infants 
are rare, often causing delays in the interpretation of EEG tracings, as well as 
issues related to subjectivity in the analysis. On the other hand, in small hospitals, 
expertise is often not available. Therefore, within the current trend towards 
developing automatic diagnostic aid methods, the goal of this paper is to 
propose a method for automatically predicting the physician’s EEG analysis 
(abnormal EEG versus normal EEG). 

Several studies tried to automatize bursts detection and seizures occurrences 
(uncontrolled electrical activity in the brain, producing physical convulsions, 
minor physical signs, thought disturbance, or a combination of those symptoms). 
For instance, authors of [20], suggested a method for discriminating between 
seizure and non-seizure EEG epochs of full-term infants. They extracted features, 
in the time domain, frequency domain and information theory domains from 17 
full-term newborns. Features were then classified using a Support Vector 
Machine (SVM) into seizure and non-seizure EEG. It is noteworthy that EEG 
characteristics vary a lot between preterm babies and full term babies [21]and 
are therefore very different from adults EEG. Few studies tackle the problem of 
identifying abnormal EEG of preterm infants. Within the scope of automatic 
EEG analysis for premature newborns, we can put forward the work presented 
by [3]. The authors proposed a method for automated burst detection in the 
EEG. The detection is based on line length; this length is the running sum of the 
absolute differences between all consecutive samples into a predefined window 
[22]. The corpus consisted of 10 preterm infants with a gestational age of less 
than 34 weeks. It is worth noting that in these approaches [3] [17] [18] [20] the 
retrospective investigation was done without prospective investigation, which 
may induce inherent biases. 

Finally we would like to quote a recent work we did on this problematic [23]. 
On the same corpus of this paper (100 infants born after less than 35 weeks of 
gestation), IBI and bursts were extracted on 316 EEG recordings. Then temporal 
features were computed from these bursts and IBI; this conduced to 12 indexes 
for each EEG. Then the age of gestation has been added to those 12 features and 
tested with multiple linear regressions on all features. With a 5 cross validation, 
we reached a sensitivity of 85.53% ± 15.97%, a specificity of 74.14% ± 5.67%, and 
an AUC of 0.80 ± 0.08. The main drawbacks of that paper concern the fact that it 
uses only multiple linear regressions and no other machine learning methods 
like neural networks or support vector machines for example. Furthermore, no 
selection of pertinent features has been done because all 13 features were 
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systematically used. Finally the standard deviation of the sensitivity is very high, 
this could conduce to over fitting of the predictive model that has been retained. 

The method outlined in this paper works in four steps. First, a preprocessing 
stage: EEG was filtered, using a band-stop IIR filter and smoothed using a 
moving average window. Secondly, IBI were detected by thresholding standard 
deviation of preprocessed EEG. Thirdly, temporal features were extracted from 
IBI and bursts. Finally, feature selection was incorporated in the classification 
step so as to select relevant features that maximize classification performance. 
Two classifiers were tested: Support Vector Machines (SVM) and Multiple 
Linear Regressions with all combinations of features. Performance measures 
were evaluated using areas under the ROC curves (AUC, [24] [25]). The 
proposed method was validated on a cohort of 100 preterm babies with no 
severe brain injuries. 

The paper is outlined as follows: Section 2 describes the collected database. 
Section 3 accounts for the method. While Section 4 describes the results, Section 
5 provides a discussion. Finally a conclusion is drawn and some future works are 
suggested. 

2. Materials 

EEG signals from 100 preterm infants were collected in the Hospital of Angers, 
France, at the neonatal intensive care unit of the neuropediatric department. 
This monitoring was part of the usual clinical follow up of premature infants. All 
legal representatives of the babies gave informed consent for participation in 
research studies. EEG were recorded at sampling rate of 256 Hz. The recording 
system (Alliance from Nicolet Biomedical) was used with 8 to 11 adapted scalp 
electrodes according to the head size. Therefore, each EEG was composed of 11 
channels. Electrodes were placed according to the international 10 to 20 system 
(Figure 2). In the acquisition procedure, we did not use any hard filters besides the 
internal filters of the EEG device; we used only a software high-pass filter with 0.1 
Hz as a cut-off frequency, which is used to remove the offset of the baseline. 

Thus, 416 neonatal EEG recordings lasting from 30 to 45 minutes were 
performed between January 1, 2003 and December 31, 2004. All 100 infants had 
less than 35 weeks of gestation. Each baby had between 1 to 7 recordings. 

The 416 EEG were reviewed by a neuropediatrician expert and classified as 
normal, abnormal and doubtful. Thus by a careful visual analysis, EEG were 
considered normal if the background activity, in relation to the gestation age, 
was normal and no abnormal features on the EEG appeared. The abnormal EEG 
were those who showed excessive discontinuities with maximal IBI duration 
greater than 50% of the maximal value (in relation to the age of gestation), 
seizures or positive rolandic sharp waves of more than 2 per minute. From 416 
EEG, 100 EEG recordings were considered as doubtful and were thus rejected. 
Finally, for the 316 kept EEG, the careful visual eye inspection led to 274 normal 
EEG (88.77%, 31.04 ± 2.13 weeks of gestation) and 42 abnormal EEG (11.23%,  
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Figure 2. Names and positions of electrodes from [26]. 

 
30.01 ± 2.19 weeks of gestation). An example of abnormal EEG is illustrated in 
Figure 1 showing the phenomenon of IBI. 

3. Methods 
3.1. Problem Statement 

Let ( )s t  denoting the EEG signal of N samples recorded in a given channel, in 
which abnormal EEG have to be detected. The EEG signal essentially contains 
background activity where bursts appear together with abnormal activities (IBI 
with discontinuity, seizures, rolandic sharp waves, etc.). The problem we address 
in this paper consists first in detecting the IBI and secondly classifying EEG into 
normal or abnormal. Automatic detection of abnormal EEG works in four steps 
summarized in Figure 3: preprocessing, IBI detection, feature extraction, feature 
selection and classification. In this section, each of these steps will be detailed. 

3.2. Preprocessing 

For each channel, raw EEG signal ( )s t  has been band-stop filtered at 50 Hz 
with a notch second order Butterworth IIR filter. Thus, we obtained a filtered 
signal ( )BPs t  where the power supply frequency of 50 Hz was removed. Then, 

( )BPs t  has been smoothed by calculating the moving average over a window of 
width 1ω : 

[ ] [ ]
1

1

2

21

1 , 1, ,
n
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s n s k n N
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ωω

+

= −

= =∑               (1) 

3.3. Inter Burst Intervals Detection 

For detecting IBI, the standard deviation of signal ( )MAs t  has been computed 
and thresholded as in the work of [27]. Standard deviation has been computed 
on sliding windows of size 2ω , with an overlap of 3ω  samples ( 3 2ω ω< ) as in 
this formula: 
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Figure 3. Block diagram of the method. 
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Successive standard deviation segments with values less than a threshold TV  
(in μV) and longer than 1 s have been detected and delimited by an onset and an 
offset boundary limit markers. Consecutive detections less than 0.5 s apart have 
been grouped together and considered as the same IBI. Finally, only IBI present 
across all 11 EEG channels and longer than 1 s have been kept. Noteworthily, it 
is highly crucial to set the threshold TV  so as to get the best performance. 
Hence, 100 different values of threshold TV , selected from 1 to 100 μV with a 
step of 1, have been tested. 

3.4. Feature Extraction 

For each EEG of 11 channels, a vector of 13 features has been extracted as 
following: 

1) the number of IBI, called nb_IBI, 
2) the total duration of IBI, which is defined as the sum of all IBI durations, 

called tot_IBI (seconds), 

3) the percentage of IBI in the EEG, called ( ) __ %
_

tot IBIP IBI
EEG duration

= , 

4) the duration of the longest IBI, called Max_IBI (seconds), 
5) the maximum of IBI percentage in the EEG, called  

( ) __ _ %
_

Max IBIP Max IBI
EEG duration

= , 

6) the mean duration of IBI which is defined as the sum of the IBI durations 
divided by the number of IBI, called Mean_IBI (seconds), 

7) the number of bursts, called nb_B, 
8) the total duration of the bursts that are calculated as the sum of all bursts 

durations, called tot_B (seconds), 

9) the percentage of bursts in the EEG, called ( ) __ %
_
tot BP B

EEG duration
= , 

10) the duration of the longest burst, called Max_B (seconds), 
11) the maximum of bursts percentage in the EEG, called  

( ) __ _ %
_

Max BP Max B
EEG duration

= , 

12) the mean duration of the bursts was calculated as the sum of the bursts 
durations divided by the number of bursts, called Mean_B (seconds), 

13) the gestational age of the infant at the time of the EEG examination, called 
Age_EEG (weeks). 
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3.5. Feature Selection and Classification 

The extracted features and the gestational age form a set of vectors 
13, 1, ,mx m M∈ =   with M the total number of EEG. The entire data set is 

written as ( ) ( ) ( ){ }1 1, , , , , , ,m m M Mx y x y x y   with class labels { }1, 1my ∈ + −  
for Abnormal and Normal EEG respectively. The task hereafter consists of 
selecting relevant features and discriminating EEG into Abnormal or Normal. 
Two classifiers were compared: Support Vector Machines (SVM) and Multiple 
Linear Regressions. In the following, feature selection is explained in the context 
of both classification methods. 

3.5.1. Support Vector Machines 
Feature extraction was done along with SVM classification [28]-[36]. We will 
now very briefly describe the principles underlying the SVM principles. 

Technically, SVM separate the data set  
( ) ( ) ( ){ } { }1 1, , , , , , , 1,1d

m m M Mx y x y x y ∈ × −    by a hyperplane with the 
largest possible margin and the minimal number of misclassified data. This 
hyperplane is defined by a weight vector dw∈ , d being the dimension of 
feature vectors, and an offset b∈  as following: 

( )
: { 1,1}d

m m

H
x sign w x b

→ −

⋅ +


                   (3) 

This hyperplane is calculated by solving an optimization problem under 
constraints: 

( )

2

1

1
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21
2

w  is the maximal margin hyperplane, C is the regularization parameter  

and mξ  are the nonnegative slack variables [34] measuring errors. 
By setting to zero the derivatives of the partial associated Lagrangian 

according to the primal variables ,w b  and mξ , the optimization problem of 
the dual formulation can be written as: 

1 , 1

1

1 ,
2

subject to : 0 and 0
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The linear SVM is extended to a non-linear classifier by mapping data into a 
higher dimension space using a mapping function Φ , then the optimization 
problem becomes as follows: 

( )
1 , 1

1

1 ,
2

subject to : 0 and 0

M M

m m p m p m p
m m p

M

m m m
m

y y K x x

y

α α α
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= =

=

 −

 ≤ =

∑ ∑

∑
             (6) 
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where K designs the kernel function. The hyperplane solution has the final 
following formulation: 

( ) ( )
1

,
M

m m m
m

h x y K x x bα
=

= +∑                    (7) 

Several kernels were tested, namely Radial basis function kernels (RBF), 
polynomial kernels and linear kernels. As for the dimension d of input data, all 
combinations of the 13 features were tested for each kernel. This results in 
testing 132 1 8191− =  combinations for each kernel and for each of the 100 
threshold values aforementioned in 3. 

For the implementations, we used Matlab© (The Mathworks Inc., South Natic, 
MA, USA) and the LS-SVM 1.8 toolbox that provides a complete implementation 
of SVM [37]. 

3.5.2. Multiple Linear Regressions 
Multiple linear regression is a generalization of the simple linear regression 
method [38]. This method attempts to model the relationship between a 
response variable and explanatory variables. Suppose we have n observations 
and p explanatory variables, with iY  the n variables to be predicted and 

1, , , 1, ,i ipX X i p=   the explanatory variables, we have the following 
equation: 

0 1 1 2 2 , 1, ,i i i p ip iY a a X a X a X i n= + + + + + =           (8) 

where the coefficients 0 1, , , pa a a  are the parameters to be estimated and i  
are the errors of the model that expresses the missing informations. 

Like for SVM, all combinations of the 13 explanatory variables for each 
threshold were tested. 

3.6. Performance Evaluation 

To evaluate the accuracy of the predictions, two parameters were used: the 
sensitivity and the specificity. The percentages of sensitivity and specificity were 
computed as follows: 
 ( )sensitivity 100 TP TP FN= × + , 

 ( )specificity 100 TN TN FP= × +  with: 

- TP: number of true positives, TN: number of true negatives, 
- FN: number of false negatives, FP: number of false positives. 

The use of sensitivities and specificities is based on a precondition: the 
distribution of “normal” and “abnormal” EEG must be significantly balanced. 
We reached a prevalence of 11.23%, so this condition of data balance was not 
met by the corpus of EEG. Therefore, ROC curves were used [24]: this 
curve-based method is independent of class distribution and independent of 
misclassification data proportion. By plotting sensitivity versus 1—specificity for 
different cutoff values, the ROC curves were built. The area under the curve 
reflects the accuracy of the test: a high area gives a high test accuracy [24]. 

For estimating the generalization error with a small bias and a small variance, 
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we used a K-fold cross-validation [39] (K equal to 5). So, the data set is 
randomly divided into K equal subsets (called folds). The classifier is trained on 

1K −  folds; the validation performances are then measured on the remaining 
fold that was not used during the training phase. The process is repeated K times 
by using the remaining fold to estimate the validation errors: thus, the 
performance of the classifier is obtained by averaging the K AUC. The latter area 
gives us an overall accuracy for each ROC curve; therefore to reach the best 
threshold for each curve, the best sensitivity and the best specificity have been 
computed by minimizing the quantity: 

2 2sensitivity specificity1 1
100 100

   − + −      
               (9) 

The 5 subsets were built randomly; just keeping an equivalent number of 
children in each subset: due to the number of 42 abnormal EEG (indivisible by 
5), we had 3 sets of 8 abnormal EEG and 2 sets with 9 abnormal EEG. 

During the 5 cross validations, 3 kernels (linear, polynomial and gaussian 
radial basis) were tested. For the polynomial kernel, the degree varied from 3 to 
5. The gaussian radial basis worked with [ ]0.1;2.0σ ∈ . The optimal SVM 
kernels (linear, polynomial and gaussian radial basis) that gave the highest mean 
value of the K AUC were retained. 

4. Results 

Table 1 shows performance of all classifiers as a mean ± standard deviation of 
sensitivity, specificity and AUC. It is clear that the Multiple Linear Regression 
method achieved the best performance with a mean sensitivity of 
86.11% 10.01%± , a mean specificity of 77.44% 7.62%±  and a mean AUC of 
0.82 0.04± . The selected threshold TV  was equal to 32 μV. The best 
combination of features was obtained with 11 features: Age_EEG, nb_IBI, 
tot_IBI, P_IBI, Max_IBI, P_Max_IBI, Mean_IBI, nb_B, P_B, P_Max_B and 
Mean_B (see Table 2 for the descriptive statistics of all extracted features for the 
best threshold TV  equal to 32 μV). 

For linear SVM, the threshold was 35 μV and the selected features were: 
nb_IBI, P_IBI, P_Max_IBI Mean_IBI, nb_B, P_Max_B. SVM with polynomial 
kernels reached the optimal performance with a threshold equal to 32 μV using 
Age_EEG, tot_IBI, P_IBI, Max_IBI, tot_B, P_B, Max_B, P_Max_B, Mean_B. 
Finally, the gaussian SVM used only 3 features Age_EEG, Mean_IBI, nb_B, with 
a threshold equal to 25 μV. 

The final detector was trained on all the corpus with the Multiple Linear 
Regression method on the 11 features Age_EEG, nb_IBI, tot_IBI, P_IBI, 
Max_IBI, P_Max_IBI, Mean_IBI, nb_B, P_B, P_Max_B and Mean_B. With the 
prediction set to +1 (Abnormal) and −1 (Normal), we obtained the Equation (10) 
which is detailed in the following. 

1 2 3 4 5 6

7 8 9 10 11

0.1936 0.1929  0.1893 0.1246 0.0623  0.0286
0.0104 0.001 0.0007 0.0005 0.0002

P x x x x x x
x x x x x

= − − + + + −

+ − + − −
   (10) 
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Table 1. 5-cross validation results. 

Method Sensitivity (%) Specificity (%) AUC 

SVM linear kernels 48.37 ± 13.97 98.19 ± 2.23 0.73 ± 0.06 

SVM polynomial kernels 53.17 ± 11.20 97.08 ± 1.63 0.75 ± 0.06 

SVM RBF kernels 53.17 ± 11.20 98.55 ± 1.52 0.76 ± 0.05 

Multiple linear regression 86.11 ± 10.01 77.44 ± 7.62 0.82 ± 0.04 

 
Table 2. Extracted features for a threshold equal to 32 μV. 

Variables Normal (n = 274) Abnormal (n = 42) P-value 

nb_IBI 86.89 ± 67.30 175.64 ± 69.01 P < 0.01 

tot_IBI (seconds) 221.01 ± 218.30 705.12 ± 414.87 P < 0.01 

P_IBI (%) 11.85 ± 11.70 39.90 ± 23.27 P < 0.01 

Max_IBI (seconds) 7.40 ± 5.36 22.88 ± 22.35 P < 0.01 

P_Max_IBI (%) 0.40 ± 0.29 1.50 ± 2.44 P < 0.01 

Mean_IBI (seconds) 2.06 ± 0.79 4.20 ± 3.27 P < 0.01 

nb_B 87.76 ± 67.20 176.36 ± 69.00 P < 0.01 

tot_B (seconds) 1627.90 ± 283.28 1104.40 ± 465.98 P < 0.01 

P_B (%) 88.15 ± 11.70 60.10 ± 23.27 P < 0.01 

Max_B (seconds) 388.40 ± 402.52 114.06 ± 177.16 P < 0.01 

P_Max_B (%) 21.63 ± 23.09 6.33 ± 9.72 P < 0.01 

Mean_B (seconds) 130.65 ± 357.70 9.35 ± 11.61 P < 0.05 

 
where variable P represents the variable prediction, variable x1 represents 
Mean_IBI, variable x2 represents nb_IBI,..., variable x11 represents Mean_B (all 
variables are shown in Table 3). Therefore, Equation (10) shows the weight 
(impact) of features on the prediction and their positive or negative correlations 
with prognosis. The weight associated to each feature and their cumulative 
values are shown in Table 3. 

All calculations were performed on computers equipped with Intel Core 
i5-3470 CPU at 3.20 GHz, 8 Go of RAM under Linux Ubuntu. We used 10 
computers simultaneously: for the 100 thresholds, the linear SVM kernels took 9 
days and 14 hours. While the polynomials SVM kernels took 65 days and 8 
hours, only 10 days and 2 hours were necessary for the RBF SVM kernels. Finally, 
the Multiple Linear Regressions took only 59 minutes on one computer. 

5. Discussion 

Experimental results show that a Multiple Linear Regression estimated on 11 
features (Age_EEG, nb_IBI, tot_IBI, P_IBI, Max_IBI, P_Max_IBI, Mean_IBI, 
nb_B, P_B, P_Max_B and Mean_B) can detect accurately abnormal EEG. The 
detection of an abnormal preterm infant EEG reaches a sensitivity of 95.11% ± 
10.01%, a specificity of 77.44% ± 7.62%, and an AUC of 0.82 ± 0.04. Thus, if  
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Table 3. The impact and cumulative impact of each variable. 

Variables Weight (in %) Cumulative weight (in %) 

Mean_IBI 24.08 24.08 

nb_IBI 23.99 48.06 

nb_B 23.54 71.60 

P_Max_IBI 15.50 87.10 

Age_EEG 7.75 94.85 

P_B 3.56 98.41 

P_IBI 1.29 99.70 

Max_IBI 0.12 99.82 

tot_IBI 0.09 99.91 

P_Max_B 0.06 99.97 

Mean_B 0.02 100.00 

 
the automatic detection considers that an EEG is abnormal, it must be 
interpreted also by the neurologist before undergoing more medical examinations 
such as an MRI (Magnetic Resonance Imaging). Finally, due to the high 
sensitivity of our test, an EEG classified as normal does not need to be 
interpreted urgently by the doctor. 

A main advantage of the proposed method is that threshold and feature 
selection are tuned so as to maximize classification performance. There are of 
course several ways to select threshold and features [40] [41] [42] [43] [44]; but 
they are not optimal from a classification point of view. 

When comparing SVM to Multiple Linear Regressions, we can see that 
computational time of linear SVM is 1.32 × 106 times slower, RBF SVM is 1.46 × 
106 times slower and polynomial SVM is 9.52 × 106 times slower than that of 
regressions. Besides, Multiple Linear Regressions performance are higher than 
SVM ones. However, SVM results are promising, namely those obtained with 
RBF SVM kernels where only 3 variables were selected (Age_EEG, Mean_IBI, 
nb_B). This sparsity in feature selection could enhance the robustness of our 
learning machines [45] [46]. It is to note that the Multiple Linear Regression 
method captures almost 95% of the prediction process with 5 variables 
(Mean_IBI, nb_IBI, nb_B, P_Max_IBI, Age_EEG), as can be seen in the 
cumulative expressive power (Table 3). 

It is also worthy to note that performances were achieved on a set of 316 EEG 
after rejecting 100 doubtful EEG. It would be interesting to learn a classifier that 
could automatically labels these suspicious recordings as ambiguous. The 
weaknesses of this article relies on the fact that EEG classifications were only 
achieved by a single EEG expert. This is a major flaw of the proposed system 
where two or three expert opinions would limit the biases of the predictions. 
Another limitation of this paper lies in the fact that only SVM and Multiple 
Linear Regressions were used and not neural networks for example. The reason 

https://doi.org/10.4236/jdaip.2018.64009


D. Schang et al. 
 

 

DOI: 10.4236/jdaip.2018.64009 152 Journal of Data Analysis and Information Processing 
 

for this is essentially because it would have taken too long to test all the 
combinations with neural networks. 

6. Conclusions 

This study suggests an automated method to detect abnormal Electroencepha- 
lograms (EEG) of preterm infants. The novelty of this paper lies in the combination 
of these three facts: firstly we work on preterm infants; secondly we propose to 
automatize the current diagnosis and not to automatize a long term neurological 
outcome and thirdly this automated prediction is evaluated in a prospective 
group and not only in a retrospective group. The method consists of detecting 
Inter Burst Intervals, extracting features from EEG, selecting relevant features 
and classifying them into normal or abnormal EEG. Thus, gestational age and 10 
features (N_IBI, TOT_IBI, P_IBI, MAX_IBI, P_MAX_IBI, MEAN_IBI, N_B, 
P_B, P_MAX_B, MEAN_B) extracted from the EEG and introduced in a 
Multiple Linear Regression model, could reliably predict an abnormal finding 
with a sensitivity of 86.11% ± 10.01%, a specificity of 77.44% ± 7.62% and an 
AUC of 0.82 ± 0.04.  

These results are very promising and encourage further research that could 
enhance detection of abnormal EEG, namely considering more features, like 
frequency and information theory features for instance. Finally, testing 
combination of several classifiers could be a promising path of research too. 
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