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Abstract 
In this paper, we introduce the concepts of γ and β approximations via general ordered topological 
approximation spaces. Also, increasing (decreasing) γ, β boundary, positive and negative regions 
are given in general ordered topological approximation spaces (GOTAS, for short). Some impor-
tant properties of them were investigated. From this study, we can say that studying any proper-
ties of rough set concepts via GOTAS is a generalization of Pawlak approximation spaces and gen-
eral approximation spaces. 
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1. Introduction 
Rough set theory was first proposed by Pawlak for dealing with vagueness and granularity in information sys-
tems. Various generalizations of Pawlak s rough set have been made by replacing equivalence relations with 
kinds of binary relations and many results about generalized rough set with the universe being finite were ob-
tained [1]-[7]. An interesting and natural research topic in rough set theory is studying it via topology [8] [9]. 
Neighborhood systems were first applied in generalizing rough sets in 1998 by T. Y. Lin as a generalization of 
topological connections with rough sets. Lin also introduced the concept of granular computing as a form of to-
pological generalizations [10]-[13]. In this paper, we give the concept of γ, β via topological ordered spaces and 
studied their properties which may be viewed as a generalization of previous studies in general approximation 
spaces, as if we take the partially ordered relation as an equal relation, we obtain the concepts in general ap-
proximation spaces [14]. 

2. Preliminaries 
In this section, we give an account of the basic definitions and preliminaries to be used in the paper. 
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Definition 2.1 [15]. A subset A of U, where ( ),U ρ  is a partially ordered set is said to be increasing (resp. 
decreasing) if for all a A∈  and x U∈  such that a xρ  (resp. x aρ ) imply x A∈ . 

Definition 2.2 [15]. A triple ( ), ,U τ ρ  is said to be a topological ordered space, where ( ),U τ  is a topological 
space and ρ  is a partial order relation on U. 

Definition 2.3 [16]. Information system is a pair ( ), ,U A  where U is a non-empty finite set of objects and A  
is a non-empty finite set of attributes. 

Definition 2.4 [17]. A non-empty set U equipped with a general relation R  which generates a topology Rτ  
on U and a partially order relation ρ  written as ( ), ,RU τ ρ  is said to be general ordered topological approxi-
mation space (for short, GOTAS). 

Definition 2.5 [18]. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . We define: 
(1) ( ) Inc

IncR A A°= , IncA°  is the greatest increasing open subset of A. 

(2) ( ) Dec
DecR A A°= , DecA°  is the greatest decreasing open subset of A. 

(3) ( )Inc IncR A A= , IncA  is the smallest increasing closed superset of A. 

(4) ( )Dec DecR A A= , DecA  is the smallest decreasing closed superset of A. 

(5) 
( )( )
( )( )

IncInc
Inc

card R A

card R A
α =  (resp. 

( )( )
( )( )

DecDec
Dec

card R A

card R A
α = ) and Incα  (resp. Decα ) is R-increasing (resp. de-

creasing) accuracy. 
Definition 2.6 [17]. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . We define: 
(1) ( ) ( )( )Inc

IncIncS A A R R A= ∩ , ( )IncS A  is called R-increasing semi lower. 

(2) ( ) ( )( )Inc Inc
IncS A A R R A= ∪ , ( )IncS A  is called R- increasing semi upper. 

(3) ( )( )( ) Dec
DecDecS A A R R A= ∩ , ( )DecS A  is called R-decreasing semi lower. 

(4) ( ) ( )( )Dec Dec
DecS A A R R A= ∪ , ( )DecS A  is called R-decreasing semi upper. 

A is R- increasing (resp. decreasing) semi exact if ( ) ( )Inc
IncS A S A=  (resp. ( ) ( )Dec

DecS A S A= ), otherwise 
A is R- increasing (resp. decreasing) semi rough. 

Proposition 2.7 [18]. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then 
(1) ( ) ( ) ( ) ( ) ( ) ( )( )Inc DecInc Inc Dec DecR A A S A R A A S Aα α⊆ ⊆ ⊆ ⊆ . 

(2) ( ) ( ) ( ) ( ) ( ) ( )( )Inc Inc Inc Dec Dec DecS A A R A S A A R Aα α⊆ ⊆ ⊆ ⊆ . 

3. New Approximations and Their Properties 
In this section, we introduce some definitions and propositions about near approximations, near boundary regions 
via GOTAS which is essential for a present study. 

Definition 3.1. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . We define: 
(1) ( ) ( )( ) ( )( ) Inc Inc

Inc IncInc
A A R R A R R Aγ  = ∩ ∪  , ( )Inc

Aγ  is called R-increasing γ  lower. 

(2) ( ) ( )( ) ( )( )Inc Inc Inc
Inc IncA A R R A R R Aγ  = ∪ ∪  , ( )Inc Aγ  is called R-increasing γ  upper. 

(3) ( ) ( )( ) ( )( )Dec Dec
Dec DecDec

A A R R A R R Aγ  = ∩ ∪  , ( )Dec
Aγ  is called R-decreasing γ  lower. 

(4) ( ) ( )( ) ( )( )Dec Dec Dec
Dec DecA A R R A R R Aγ  = ∪ ∪  , ( )Dec Aγ  is called R-decreasing γ  upper. 

A is R-increasing (resp. R-decreasing) γ  exact if ( ) ( )Dec
Inc

A Aγ γ=  (resp. ( ) ( )Dec
Dec

A Aγ γ= ) otherwise A 
is R-increasing (resp. R-decreasing) γ  rough. 

Proposition 3.2. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
(1) ( ) ( )Inc IncA B A Bγ γ⊆ → ⊆  ( ( ) ( )Dec DecA B A Bγ γ⊆ → ⊆ ). 
(2) ( ) ( ) ( )Inc Inc IncA B A Bγ γ γ∩ ⊆ ∩  ( ( ) ( ) ( )Dec Dec DecA B A Bγ γ γ∩ ⊆ ∩ ). 
(3) ( ) ( ) ( )Inc Inc IncA B A Bγ γ γ∪ ⊇ ∪  ( ( ) ( ) ( )Dec Dec DecA B A Bγ γ γ∪ ⊇ ∪ ). 
Proof. 
(1) Omitted. 
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( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

(2)

.

Inc Inc Inc
Inc Inc

Inc Inc Inc
Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R A B R R A B

A B R R A R B R R A R B

A B R R A R R B R R A R R B

A R R A R R A B R R B R R B

A B

γ

γ γ

 ∩ = ∩ ∪ ∩ ∪ ∩ 
 ⊆ ∩ ∪ ∩ ∪ ∩ 
 ⊆ ∩ ∪ ∩ ∪ ∩ 

   ⊆ ∪ ∪ ∩ ∪ ∪   
⊆ ∩

 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

(3)

.

Inc Inc Inc
Inc Inc

Inc Inc Inc
Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R A B R R A B

A B R R A R B R R A R B

A B R R A R R B R R A R R B

A R R A R R A B R R B R R B

A B

γ

γ γ

 ∪ = ∪ ∪ ∪ ∪ ∪ 
 ⊇ ∪ ∪ ∪ ∪ ∪ 
 ⊇ ∪ ∪ ∪ ∪ ∪ 

   ⊇ ∪ ∪ ∪ ∪ ∪   
⊇ ∪

 

One can prove the case between parentheses. 
Proposition 3.3. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
(1) ( ) ( )Inc Inc

A B A Bγ γ⊆ → ⊆  ( ( ) ( )Dec Dec
A B A Bγ γ⊆ → ⊆ ). 

(2) ( ) ( ) ( )Inc Inc Inc
A B A Bγ γ γ∩ ⊆ ∩  ( ( ) ( ) ( )Dec Dec Dec

A B A Bγ γ γ∩ ⊆ ∩ ). 
(3) ( ) ( ) ( )Inc Inc Inc

A B A Bγ γ γ∪ ⊇ ∪  ( ( ) ( ) ( )Dec Dec Dec
A B A Bγ γ γ∪ ⊇ ∪ ). 

Proof. 
(1) Easy. 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

(2)

.

Inc Inc
Inc IncInc

Inc Inc Inc
Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R A B R R A B

A B R R A R B R R A R B

A B R R A R R B R R A R R B

A R R A R R A B R R B R R B

A B

γ

γ γ

 ∩ = ∩ ∩ ∩ ∪ ∩ 
 ⊆ ∩ ∩ ∩ ∪ ∩ 
 ⊆ ∩ ∩ ∩ ∪ ∩ 

   ⊆ ∩ ∪ ∩ ∩ ∪   
⊆ ∩

 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( )

(3)

.

Inc Inc
Inc IncInc

Inc Inc Inc
Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R A B R R A B

A B R R A R B R R A R B

A B R R A R R B R R A R R B

A R R A R R A B R R B R R B

A B

γ

γ γ

 ∪ = ∪ ∩ ∪ ∪ ∪ 
 ⊇ ∪ ∩ ∪ ∪ ∪ 
 ⊇ ∪ ∩ ∪ ∪ ∪ 

   ⊇ ∩ ∪ ∪ ∩ ∪   
⊇ ∪

 

One can prove the case between parentheses. 
Proposition 3.4. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . If A is R-increasing (resp. decreasing) exact 

then A is R-increasing (resp. decreasing) γ  exact. 
Proof. 
Let A be R-increasing exact. Then ( ) ( )Inc

IncR A R A= , thus ( ) ( )Inc IncA R Aγ =  and ( ) ( )IncInc
A R Aγ = . 

Therefore ( ) ( )Inc
Inc

A Aγ γ= . 
One can prove the case between parentheses. 
R-increasing (resp. decreasing) exact  R-increasing (resp. decreasing) γ  exact. 
Proposition 3.5. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( ) ( )( )Inc DecInc Dec

R A A R A Aγ γ⊆ ⊆ . 
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Proof. 
Since ( )IncR A A⊆  and ( ) ( )( )Inc

Inc IncR A R R A⊆ , then ( ) ( )( ) ( )( )Inc Inc
Inc Inc IncR A R R A R R A⊆ ∪ . There-  

fore, ( ) ( )( ) ( )( ) Inc Inc
Inc Inc IncR A A R R A R R A ⊆ ∩ ∪  . Thus ( ) ( )Inc Inc

R A Aγ⊆ . 

One can prove the case between parentheses. 
Proposition 3.6. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( )( )( )Inc Inc Dec DecA R A A R Aγ γ⊆ ⊆ . 
Proof. Since ( )IncA R A⊆  and ( ) ( )Inc

IncR A A R A⊆ ⊆ , then ( )( ) ( )Inc Inc
IncR R A A R A⊆ ⊆ . Thus 

( )( ) ( )( ) ( )Inc Inc Inc
Inc IncR R A R R A R A∪ ⊆ . 

Therefore ( )( ) ( )( ) ( )Inc Inc Inc
Inc IncA R R A R R A R A∪ ∪ ⊆ . Hence ( ) ( )Inc IncA R Aγ ⊆ . 

Proposition 3.7. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( ) ( )( )Inc DecInc Dec
P A A P A Aγ γ⊆ ⊆ . 

Proof. Let ( ) ( )( )Inc
Inc Incx P A A R R A∈ = ∩ . Then x A∈  and ( )( )Inc

IncR R A . Therefore x A∈  and 

( )( ) ( )( )Inc Inc
Inc Incx R R A x R R A∈ ∪ ∈ . 

Thus ( )( ) ( )( ) ( )Inc Inc
Inc Inc Inc

x A R R A R R A Aγ ∈ ∩ ∪ =  . Hence ( ) ( )Inc Inc
P A Aγ⊆ . 

One can prove the case between parentheses. 
Proposition 3.8. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( ) ( )( )Inc DecInc Dec

S A A S A Aγ γ⊆ ⊆ . 
Proof. 
Let ( ) ( )( )Inc

IncIncx S A A R R A∈ = ∩ . Then x A∈  and ( )( )Inc
IncR R A . Therefore x A∈  and  

( )( )Inc
Incx R R A∈  or ( )( )Inc

Incx R R A∈ . 

Thus ( )( ) ( )( ) ( )Inc Inc
Inc Inc Inc

x A R R A R R A Aγ ∈ ∩ ∪ =  . Hence ( ) ( )Inc Inc
S A Aγ⊆ . 

One can prove the case between parentheses. 
Proposition 3.9. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( ) ( )( )Inc Inc Dec DecP A A P A Aγ γ⊆ ⊆ . 
Proof. 
Let ( ) ( )( )Inc Inc

Incx P A A R R A∈ = ∪ . Then x A∈  and ( )( )Inc
IncR R A . Therefore 

( )( ) ( )( )Inc Inc
Inc Incx A R R A R R A ∈ ∪ ∪  . 

Thus ( ) ( )Inc IncP A Aγ⊆ . 
Proposition 3.10. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then 

( ) ( ) ( ) ( )( )Inc Inc Dec DecA P A A P Aβ β⊆ ⊆ . 

Proof. Omitted. 
Definition 3.11. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . We define: 
(1) ( ) ( )( )( )Inc Inc

IncInc
A A R R R Aβ = ∩ , ( )Inc

Aβ  is called R-increasing β  lower. 
(2) ( ) ( )( )( )Inc Inc

Inc IncA A R R R Aβ = ∪ , ( )Inc Aβ  is called R-increasing β  upper. 

(3) ( ) ( )( )( )Dec Dec
DecDec

A A R R R Aβ = ∩ , ( )Dec
Aβ  is called R-decreasing β  lower. 

(4) ( ) ( )( )( )Dec Dec
Dec DecA A R R R Aβ = ∪ , ( )Dec Aβ  is called R-decreasing β  upper. 

A is R-increasing (decreasing) β  exact if ( ) ( )Inc
Inc

A Aβ β=  (resp. ( ) ( )Dec
Dec

A Aβ β= ), otherwise A is 
R-increasing (decreasing) β  rough. 

Proposition 3.12. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
(1) ( ) ( )Inc IncA B A Bβ β⊆ → ⊆  ( ( ) ( )Dec DecA B A Bβ β⊆ → ⊆ ). 
(2) ( ) ( ) ( )Inc Inc IncA B A Bβ β β∩ ⊆ ∩  ( ( ) ( ) ( )Dec Dec DecA B A Bβ β β∩ ⊆ ∩ ). 
(3) ( ) ( ) ( )Inc Inc IncA B A Bβ β β∪ ⊇ ∪  ( ( ) ( ) ( )Dec Dec DecA B A Bβ β β∪ ⊇ ∪ ). 
Proof. 
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(1) Omitted. 
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )

(2)

.

Inc Inc
Inc Inc

Inc
Inc Inc Inc

Inc Inc
Inc Inc Inc

Inc Inc
Inc Inc Inc Inc

Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R R A B

A B R R R A R B

A B R R R A R R B

A B R R R A R R R B

A R R R A B R R R B

A B

β

β β

∩ = ∩ ∪ ∩

= ∩ ∪ ∩

⊆ ∩ ∪ ∩

⊆ ∩ ∪ ∩

⊆ ∪ ∩ ∪

⊆ ∩

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )

(3)

.

Inc Inc
Inc Inc

Inc
Inc Inc Inc

Inc Inc
Inc Inc Inc

Inc Inc
Inc Inc Inc Inc

Inc Inc
Inc Inc Inc Inc

Inc Inc

A B A B R R R A B

A B R R R A R B

A B R R R A R R B

A B R R R A R R R B

A R R R A B R R R B

A B

β

β β

∪ = ∪ ∪ ∪

= ∪ ∪ ∪

⊇ ∪ ∪ ∪

⊇ ∪ ∪ ∪

⊇ ∪ ∪ ∪

⊇ ∪

 

One can prove the case between parentheses. 
Proposition 3.13. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
(1) ( ) ( )Inc Inc

A B A Bβ β⊆ → ⊆  ( ( ) ( )Dec Dec
A B A Bβ β⊆ → ⊆ ). 

(2) ( ) ( ) ( )Inc Inc Inc
A B A Bβ β β∩ ⊆ ∩  ( ( ) ( ) ( )Dec Dec Dec

A B A Bβ β β∩ ⊆ ∩ ). 
(3) ( ) ( ) ( )Inc Inc Inc

A B A Bβ β β∪ ⊇ ∪  ( ( ) ( ) ( )Dec Dec Dec
A B A Bγ β β∪ ⊇ ∪ ). 

Proof. 
(1) Easy. 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )

(2)

.

Inc Inc
IncInc

Inc Inc Inc
Inc

Inc Inc Inc Inc
Inc Inc

Inc Inc Inc Inc
Inc Inc

Inc Inc

A B A B R R R A B

A B R R R A R B

A B R R R A R R R B

A R R R A B R R R B

A B

β

β β

∩ = ∩ ∩ ∩

⊆ ∩ ∩ ∩

⊆ ∩ ∩ ∩

⊆ ∩ ∩ ∩

⊆ ∩

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )

(3)

.

Inc Inc
IncInc

Inc Inc Inc
Inc

Inc Inc Inc Inc
Inc Inc

Inc Inc Inc Inc
Inc Inc

Inc Inc

A B A B R R R A B

A B R R R A R B

A B R R R A R R R B

A R R R A B R R R B

A B

β

β β

∪ = ∪ ∩ ∪

⊆ ∪ ∩ ∪

⊆ ∪ ∩ ∪

⊆ ∩ ∪ ∩

⊆ ∪

 

One can prove the case between parentheses. 
Proposition 3.14. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . If A is R-increasing (resp. decreasing) exact 

then A is β-increasing (resp. decreasing) exact. 
Proof. 
Let A be R-increasing exact. Then ( ) ( )Inc

IncR A R A= . Therefore ( ) ( )Inc IncA R Aβ = , ( ) ( )IncInc
A R Aβ = . 

Thus ( ) ( )Inc
Inc

A Aβ β= . Hence A is R-increasing β  exact. 
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One can prove the case between parentheses. 
Proposition 3.15. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then  

( ) ( ) ( ) ( )( )Inc DecInc Dec
R A A R A Aβ β⊆ ⊆ . 

Proof. 
Since ( ) ( )Inc

IncR A A R A⊆ ⊆  and ( ) ( )( )Inc
Inc IncR A R R A⊆ . Then 

( ) ( )( ) ( )( )( )Inc Inc Inc
Inc Inc IncR A R R A R R R A⊆ ⊆ . 

Therefore ( ) ( )( )( )Inc Inc
Inc IncR A A R R R A ⊆ ∩   . Thus ( ) ( )Inc Inc

R A Aβ⊆ . 
One can prove the case between parentheses. 
Proposition 3.16. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then  

( ) ( ) ( ) ( )( )Inc Inc Dec DecA R A A R Aβ β⊆ ⊆ . 

Proof. Since ( )IncA R A⊆  and ( ) ( )Inc
IncR A R A⊆ . Then ( )( ) ( )Inc Inc

IncR R A R A⊆ . Thus  

( )( )( ) ( )( ) ( )Inc Inc Inc
Inc Inc IncR R R A R R A R A⊆ ⊆ . 

Therefore ( )( )( ) ( )Inc Inc
Inc IncA R R R A R A∪ ⊆ . Hence ( ) ( )Inc IncA R Aβ ⊆ . 

Definition 3.17. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then 
(1) ( ) ( ) ( )Inc

jInc Inc
B A j A j A= −  (resp. ( ) ( ) ( )Dec

jDec Dec
B A j A j A= − ), is increasing (resp. decreasing) j 

boundary region. 
(2) ( ) ( )jInc Inc

Pos A j A=  (resp. ( ) ( )jDec Dec
Pos A j A= ), is increasing (resp. decreasing) j positive region. 

(3) ( ) ( )Dec
jIncNeg A U j A= −  ( resp. ( ) ( )Inc

DecNeg A U j A= − ), is increasing (resp. decreasing) j negative 
region. Where 

Inc
j  the near lower approximations s.t. { },j β γ∈ . 

Proposition 3.18. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
(1) ( ) ( ) ( )Inc Inc IncNeg A B Neg A Neg Bγ γ γ∪ ⊆ ∪  ( ( ) ( ) ( )Dec Dec DecNeg A B Neg A Neg Bγ γ γ∪ ⊆ ∪ ). 
(2) ( ) ( ) ( )Inc Inc IncNeg A B Neg A Neg Bγ γ γ∩ ⊇ ∩  ( ( ) ( ) ( )Dec Dec DecNeg A B Neg A Neg Bγ γ γ∩ ⊇ ∩ ). 
Proof. 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(1) Dec Dec
Dec DecInc

Dec Dec Dec
Dec Dec Dec

Dec Dec Dec Dec
Dec Dec Dec Dec

Dec Dec Dec
Dec Dec Dec Dec

Neg A B U A B R R A B R R A B

U A B R R A R B R R A R B

U A B R R A R R B R R A R R B

U A R R A R R A B R R B R

γ
  ∪ = − ∪ ∪ ∪ ∪ ∪  
  ⊆ − ∪ ∪ ∪ ∪ ∪  
  ⊆ − ∪ ∪ ∪ ∪ ∪  
  ⊆ − ∪ ∪ ∪ ∪ ∪   ( )

( ) ( ) ( ) ( )
( ) ( ).

Dec

Dec Dec Dec Dec
Dec Dec Dec Dec

Inc Inc

R B

U A R R A R R A U B R R B R R B

Neg A Neg Bγ γ

    
    ⊆ − ∪ ∪ ∩ − ∪ ∪    

⊆ ∩

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(2) Dec Dec
Dec DecInc

Dec Dec Dec
Dec Dec Dec

Dec Dec Dec Dec
Dec Dec Dec Dec

Dec Dec Dec
Dec Dec Dec Dec

Neg A B U A B R R A B R R A B

U A B R R A R B R R A R B

U A B R R A R R B R R A R R B

U A R R A R R A B R R B R

γ
  ∩ = − ∩ ∪ ∩ ∪ ∩  
  ⊇ − ∩ ∪ ∩ ∪ ∩  
  ⊇ − ∩ ∪ ∩ ∪ ∩  
  ⊇ − ∪ ∪ ∩ ∪ ∪   ( )

( ) ( ) ( ) ( )
( ) ( ).

Dec

Dec Dec Dec Dec
Dec Dec Dec Dec

Inc Inc

R B

U A R R A R R A U B R R B R R B

Neg A Neg Bγ γ

    
      ⊇ − ∪ ∪ ∪ − ∪ ∪      

⊇ ∪

 

One can prove the case between parentheses. 
Proposition 3.19. Let ( ), ,RU τ ρ  be a GOTAS and ,A B U⊆ . Then 
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(1) ( ) ( ) ( )Inc Inc IncNeg A B Neg A Neg Bβ β β∪ ⊆ ∪  ( ( ) ( ) ( )Dec Dec DecNeg A B Neg A Neg Bβ β β∪ ⊆ ∪ ). 
(2) ( ) ( ) ( )Inc Inc IncNeg A B Neg A Neg Bβ β β∩ ⊇ ∩  ( ( ) ( ) ( )Dec Dec DecNeg A B Neg A Neg Bβ β β∩ ⊇ ∩ ). 
Proof. 

( ) ( ) ( )( )
( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( )( )( )( )

( )( )( ) ( )( )( )( )
( ) ( )

(1)

.

Dec
Dec DecInc

Dec
Dec Dec Dec

Dec Dec
Dec Dec Dec

Dec Dec
Dec Dec Dec Dec

Dec Dec
Dec Dec Dec Dec

Inc Inc

Neg A B U A B R R R A B

U A B R R R A R B

U A B R R R A R R B

U A B R R R A R R R B

U A R R R A B R R R B

Neg A Neg B

β

β β

 ∪ = − ∪ ∪ ∪ 
 ⊆ − ∪ ∪ ∪ 
 ⊆ − ∪ ∪ ∪ 
 ⊆ − ∪ ∪ ∪ 
 ⊆ − ∪ ∪ ∪ 

⊆ ∩

 

( ) ( ) ( )( )
( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

( ) ( )

(2)

.

Dec
Dec DecInc

Dec
Dec Dec Dec

Dec Dec
Dec Dec Dec Dec

Dec Dec
Dec Dec Dec Dec

Dec Dec
Dec Dec Dec Dec

Inc Inc

Neg A B U A B R R R A B

U A B R R R A R B

U A B R R R A R R R B

U A R R R A B R R R B

U A R R R A U B R R R B

Neg A Neg B

β

β β

 ∩ = − ∩ ∪ ∩ 
 = − ∩ ∪ ∩ 
 ⊇ − ∩ ∪ ∩ 
 ⊇ − ∪ ∩ ∪ 

⊇ − ∪ ∪ − ∪

⊇ ∪

 

One can prove the case between parentheses. 
Proposition 3.20. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then 

( ) ( ) ( ) ( ) ( ) ( )( )Inc DecInc Inc Dec Dec
S A A A S A A Aγ β γ β⊆ ⊆ ⊆ ⊆ . 

Proof. 
Let ( )Incx S A∈ . Then ( )( )Inc

Incx R R A∈ . Therefore ( )( ) ( )( )Inc Inc
Inc Incx R R A R R A∈ ∪ . Thus 

( )( ) ( )( )Inc Inc
Inc Incx A R R A R R A ∈ ∩ ∪   

and thus ( )Inc
x Aγ∈ . 

Hence 
( ) ( )Inc Inc

S A Aγ⊆                                      (1). 

Since ( )Incx R A∈ , then ( )Incx R A∈ . Therefore ( )( )Inc
Incx R R A∈ . 

Thus ( )( )( )Inc Inc
Incx R R R A∈ , and thus ( )( )( )Inc Inc

Incx A R R R A∈ ∩ . Hence 

( )Inc
x Aβ∈                                         (2) 

From (1) and (2) we have, 

( ) ( ) ( )Inc Inc Inc
S A A Aγ β⊆ ⊆ . 

One can prove the case between parentheses. 
Proposition 3.21. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then 

( ) ( ) ( ) ( ) ( ) ( )( )Inc Inc Inc Dec Dec DecA A S A A A S Aβ γ β γ⊆ ⊆ ⊆ ⊆ . 

Proof. 
Let ( )Incx Aβ∈ . Then ( )( )( )Inc

Inc Incx A R R R A∈ ∪ . Therefore x A∈  or ( )( )( )Inc
Inc Incx R R R A∈ . Thus  

x A∈  or ( )( )Inc
Incx R R A∈ . So ( )( )Inc

Incx A R R A∈ ∪ , and so ( )( ) ( )( )Inc Inc
Inc Incx A R R A R R A ∈ ∪ ∪  .  
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Thus ( )Incx Aγ∈ . Hence 
( ) ( )Inc IncA Aβ γ⊆ .                                    (1) 

Since ( )Incx Aγ∈ , x A∈  or ( )( )Inc
Incx R R A∈ , then ( )( )Inc

Incx A R R A∈ ∪ . Therefore 

( )Incx S A∈                                         (2) 

From (1) and (2) we have, ( ) ( ) ( )Inc Inc IncA A S Aβ γ⊆ ⊆ . 
One can prove the case between parentheses. 
Definition 3.22. Let ( ), ,RU τ ρ  be a GOTAS and A is a non-empty finite subset of U. Then the increasing 

(decreasing) j accuracy of a finite non-empty subset A of U is given by: 

( )
( )
( )

Inc
jInc Inc

j A
A

j A
η = , { },j β γ∈ . 

Proposition 3.23. Let ( ), ,RU τ ρ  be a GOTAS and A  non-empty finite subset of U . Then we have  

( ) ( ) ( ) ( )( )jInc jDecA A A Aη η η η≤ ≤ , for all { },j β γ∈ , where ( ) ( )
( )

.
R A

A
R A

η =  

Proof. Omitted. 
In the following example we illustrate most of the properties that have been proved in the previous propositions. 
Example 3.24. Let { }, , ,U a b c d= , { } { } { }{ }, , , ,U R a a b c d= , { } { } { } { }{ }, , , , , , , , ,R U a b c d a a d cτ φ= , 

{ } { } { } { }{ }, , , , , , , , ,C
R U c d a b b c d bτ φ=  and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , , , , , , , , .a a b b c c d d a b b d a d a c c dρ =  
For { },A a c= , we have: 

( ) { }DecR A a= , ( )( ) { },Dec
DecR R A a b= , ( )DecR A U= , ( )( )Dec

DecR R A U= . 
( ) { } ,DecS A a=  ( ) ,DecS A U=  ( ) { }, , ,SDecB A b c d=  SIncNeg φ= . 
( ) ,

Dec
A A U Aγ = ∩ =  ( ) ,Dec A A U Uγ = ∪ =  ( ) { }, ,DecB A b dγ =  IncNegγ φ=

. 
( )Dec
A A U Aβ = ∩ = , ( ) { }, ,Dec A a b cβ = , ( ) { } ,DecB A bβ =  { }IncNeg dβ =  

Proposition 3.25. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then we have 

( ) ( ) ( ) ( ) ( ) ( )( )Inc Inc SInc Dec Dec SDecB A B A B A B A B A B Aβ γ β γ⊆ ⊆ ⊆ ⊆  

Proof. Omitted. 
Remark 3.26. ( ) ( ) ( ) ( )( )Inc RInc Dec RDecB A B A B A B Aγ γ⊆ ⊆ . 

Remark 3.27. ( ) ( ) ( ) ( )( )Inc RInc Dec RDecB A B A B A B Aβ β⊆ ⊆ . 

Proposition 3.28. Let ( ), ,RU τ ρ  be a GOTAS and A  be a non-empty finite subset of U . Then
( ) ( ) ( )Inc Inc IncA A Aγ βη η η≤ ≤  ( ( ) ( ) ( )Dec Dec DecA A Aγ βη η η≤ ≤ ). 

Proof. Omitted. 
Proposition 3.28. Let ( ), ,RU τ ρ  be a GOTAS and A U⊆ . Then ( ) ( ) ( ) ( )( )Inc Inc Dec Dec

A A A Aγ β γ β⊆ ⊆  
Proof. Let ( ) ( )( ) ( )( ) Inc Inc

Inc IncInc
x A A R R A R R Aγ  ∈ = ∩ ∪  . Then x A∈  and  

( )( ) ( )( )Inc Inc
Inc Incx R R A R R A∈ ∪ . 

Therefore x A∈  and [ ( )( )Inc
Incx R R A∈  or ( )( )Inc

Incx R R A∈ ]. Thus x A∈  and ( )( )Inc
Incx R R A∈  and  

thus x A∈  and ( )( )( )Inc Inc
Incx R R R A∈ . Hence ( )( )( )Inc Inc

Incx A R R R A∈ ∩ . Therefore ( ) ( )Inc Inc
A Aγ β⊆ . 

One can prove the case between parentheses. 

4. Conclusion 
In this paper, we generalize rough set theory in the framework of topological spaces. Our results in this paper 
became the results about of γ , β  approximation in [2] in the case of ρ  is the equal relation. Also, the new 
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approximation which we give became as Pawlak s approximation in the case of ρ  is the equal relation and R is 
the equivalence relation. This theory brings in all these techniques to information analysis and knowledge 
processing. 
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