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Abstract

In this paper, we introduce the concepts of yand fapproximations via general ordered topological
approximation spaces. Also, increasing (decreasing) 7 £ boundary, positive and negative regions
are given in general ordered topological approximation spaces (GOTAS, for short). Some impor-
tant properties of them were investigated. From this study, we can say that studying any proper-
ties of rough set concepts via GOTAS is a generalization of Pawlak approximation spaces and gen-
eral approximation spaces.
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1. Introduction

Rough set theory was first proposed by Pawlak for dealing with vagueness and granularity in information sys-
tems. Various generalizations of Pawlak s rough set have been made by replacing equivalence relations with
kinds of binary relations and many results about generalized rough set with the universe being finite were ob-
tained [1]-[7]. An interesting and natural research topic in rough set theory is studying it via topology [8] [9].
Neighborhood systems were first applied in generalizing rough sets in 1998 by T. Y. Lin as a generalization of
topological connections with rough sets. Lin also introduced the concept of granular computing as a form of to-
pological generalizations [10]-[13]. In this paper, we give the concept of y, £ via topological ordered spaces and
studied their properties which may be viewed as a generalization of previous studies in general approximation
spaces, as if we take the partially ordered relation as an equal relation, we obtain the concepts in general ap-
proximation spaces [14].

2. Preliminaries

In this section, we give an account of the basic definitions and preliminaries to be used in the paper.

How to cite this paper: Abo-Elhamayel, M. (2016) y and 8 Approximations via General Ordered Topological Spaces. Applied
Mathematics, 7, 1580-1588. http://dx.doi.org/10.4236/am.2016.714136



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.714136
http://dx.doi.org/10.4236/am.2016.714136
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

M. Abo-Elhamayel

Definition 2.1 [15]. A subset A of U, where (U,p) is a partially ordered set is said to be increasing (resp.
decreasing) if forall a€ A and XeU suchthat apXx (resp. Xpa)imply xeA.

Definition 2.2 [15]. A triple (U, 7, p) is said to be a topological ordered space, where (U,7) is a topological
space and p is a partial order relation on U.

Definition 2.3 [16]. Information system is a pair (U , A), where U is a non-empty finite set of objectsand A
is a non-empty finite set of attributes.

Definition 2.4 [17]. A non-empty set U equipped with a general relation R which generates a topology 7y
on U and a partially order relation p written as (U,TR,p) is said to be general ordered topological approxi-
mation space (for short, GOTAS).

Definition 2.5 [18]. Let (U, 7, p) beaGOTASand AcU . We define:

(1) Ry (A)=A" A™ isthe greatest increasing open subset of A.

(2) Rpe(A)=AP* AP isthe greatest decreasing open subset of A.

(3) R™(A)=A", A"™ isthe smallest increasing closed superset of A.

(4) RP¢(A)=AP¢ AP* isthe smallest decreasing closed superset of A.

e _ card (Rine (A)) card (Rp, (A))
~ card ( R (A)) card (RDec (A))

creasing) accuracy.
Definition 2 6 [17 et (U, rR, p) beaGOTASand AcU . We define:

Inc Dec

(5) « (resp. ™ = Yand a™ (resp. a ) is R-increasing (resp. de-

(1) S\ (A ( e (A)). Sin (A) is called R-increasing semi lower.
(2) S"™( (§ ) S'™ (A) is called R- increasing semi upper.
3) SDec(A) AN RDe (Roec (A))+ Spec (A) is called R-decreasing semi lower.

@) S (A)=AU RDec( RP= ( ) S (A) is called R-decreasing semi upper.

A is R- increasing (resp. decreasing) semi exact if S, (A)=S"(A) (resp. Sy, (A)=S5"*(A)), otherwise
Ais R- increasing (resp. decreasing) semi rough.
Proposition 2.7 [18]. Let (U, 7, p) bea GOTASand AcU . Then

(1) Rlnc( )Calnc( )CSInC( )(BDec(A)QQDec( )CSDeC( ))
(2 S™(A)ca™(A)=R"™(A) (5% (A)ca™ (A)= R (A)).

3. New Approximations and Their Properties

In this section, we introduce some definitions and propositions about near approximations, near boundary regions
via GOTAS which is essential for a present study.
Definition 3.1. Let (U,7,p0) bea GOTAS and AcU . We define:

(1) 7o (A)= A A[R™ (Rpp (A) U Ry (R™ ( }
2 7" (A)=AU|R™ (Ripe (A)) LR (R™ ] is called R-increasing 7 upper.

@) 7, (A)=AN|R">™ (BDQC(A))URD%(RD“( ))} ( A) is called R-decreasing 7 lower.

(4) _Dec( A)= AU[F?D%(RD%(A))U RDQC(RDQC( )):1 Dec(A) is called R-decreasing 7 upper.

A is R-increasing (resp. R-decreasing) » exact if =7 (A) (resp. ZDeC(A)=7De°(A))other\NiseA

is R-increasing (resp. R-decreasing) 7 rough.
Proposition 3.2. Let (U,7;,p) bea GOTASand A,BcU . Then

(1) AcB —)77'"C(A)c;7'"°( ) (AcB —>7DEC(A)C7D8°(B)).
(2) —Inc (Am B) —Inc (A) |I']C( ) (—DEC (Aﬁ B) Dec (A)m}/Dec (B)).
(3) }7InC(AUB) —Inc(A)U}/Inc( ) (}/DeC(AUB) DeC(A)U}/DeC(B))_

Proof.
(1) Omitted.

is called R-increasing » lower.
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) ;7'”C(AmB):(AmB)U[F_Q'M(B,nc(AmB)uB,nc(ﬁ'“(AmB))ﬂ
< (ANB)U[R™ (Ry (A) A Rp (B))URy, (R™ (A) R™ (B))
g(AmB)u[ﬁ'“(B,HC(A)mﬁ'“B,m(B )JUR e (R™(A)AR,R™ (B)

07" (AuB) = (AuB) % (R, (A B) B (R (A8
S (AUB)U[R™ Ry (A) VR (B))UR e (R™ (A)UR™ (B))]
S (AUB)U[R™ (Rye (A)UR™ R, (B)) UR (R™ (A) IR, R™ (B))]

o27"™(A)uy"™(B).
One can prove the case between parentheses.
Proposition 3.3. Let (U,7;,p) bea GOTASand A BcU . Then
(1) AcB-y, (A)cr, (B) (AcB-y, (A)cr,, (B))
@ 7, (AnB)cy, (A7, (B) (75, (ANB)crg, (A)N7g,

)Y, )
(3) Zlnc(AUB)QZInc(A)UZInc(B) (ZDec(AUB)QZDeC(A)UZDeC(B))'
Proof.
(1) Easy.

4
®7,,(AUB)=(AUB)A[
[

2Zlnc (A)UZInc (B)

One can prove the case between parentheses.

Proposition 3.4. Let (U,z,p) be a GOTAS and A,BcU . If A is R-increasing (resp. decreasing) exact
then A is R-increasing (resp. decreasing) y exact.

Proof.

Let A be R-increasing exact. Then R™(A)=R,,(A), thus 7" (A)=R"™(A) and y,
Therefore 7" (A) =y, (A).

One can prove the case between parentheses.

R-increasing (resp. decreasing) exact ———  R-increasing (resp. decreasing) » exact.
Proposition 3.5. Let (U,7;,0) beaGOTASand AcU . Then Ry (A)c 7, (A) (Row(A) <7y, (A)).

nc(A):BmC(A)'
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Proof.
Since Ry (A)c A and Ry, (A)< R™ (Rypc (A)), then Ry (A) < R"™ (Rye (A)) U R (R"™ (A)). There-
<

fore, R, (A)c A m[R'”C(B,nC(A))UR,HC(R'”C(A))} Thus R, (A) <y, (A).

One can prove the case between parentheses.
Proposition 3.6. Let (U,7;,p) beaGOTASand AcU . Then 7" (A)cR"™(A) (7°°(A) = R**(A)).
Proof. Since AcR"™(A) and R,,.(A)c AcR"™(A), then R"™ (R, (A))c AcR"™(A).Thus

Rne (Blnc (A))UBInc (§Inc (A)) c Rne (A) )
Therefore AUR"™ (R, (A))UR,, (ﬁ'“ (A)) c R"™(A).Hence 7™ (A)c=R"™(A).
Proposition 3.7. Let (U,7;,0) beaGOTASand AcU . Then P (A)cy, (A) (Pow(A) S 7, (A)).

Proof. Let xe Py, (A)= ARy (R™(A)). Then xe A and R, (R"™(A)). Therefore xe A and
xeR"™ (R (A))UX € Ry (R™ (A)).

Thus xe AN R™ (Rpx (A)) VR (R™(A)) [ =7, (A). Hence P, (A<, (A).

One can prove the case between parentheses.

Proposition 3.8. Let (U,z;,p) beaGOTASand AcU.Then S, (A)cy, (A) (§Dec (A<, (A))
Proof.

Let xeS,.(A)=ANR"™ (R, (A)).Then xe A and R"™(R,,(A)). Therefore xe A and

Xe ﬁmc (Blnc(A)) or XeBlnc(Rlnc(A)) '
Thus XEAm|;F_2|nC(B|nC(A))UR|nC(RInC(A)):|:7InC(A) Hence S,nc( )g}/lnc(A).
One can prove the case between parentheses B B

Proposition 3.9. Let (U,7;, p) beaGOTASand AcU . Then P"™ (A)= 7™ (A) (P*(A) < 7" (A)).
Proof.

Let xeP"™(A)=AUR" (R, (A)). Then xe A and R" (R, (A)). Therefore

X Au[§'”° (Bmc(A))uBmC(ﬁ'm(A))J :

Thus P"™(A)c 7™ (A).
Proposition 3.10. Let (U,7,,0) beaGOTASand AcU . Then

Elnc (A) c ﬁlnc (A) (BDec (A) c ﬁDec (A)) )
Proof. Omitted.

Definition 3.11. Let (U Toy P l ea GOTAS and AcU . We define:
@ B,.(A)=An R'W(RmC R” (A) ) B, is called R-increasing 4 lower.
B

2 B"™( )=AuB,nC< R™ (Ryn (A) ) B A is called R-increasing £ upper.
®) B..(A)=An §De°( Dec(§De° )) B, (A) is called R-decreasing /3 lower.

(
@) B™(A)=AuU RDec(RDec Roec )) B (A) is called R-decreasing 3 upper.
A is R-increasing (decreasing) £ exact if B (

A)=pB"(A) (resp. B _(A)=pB"*(A)), otherwise A is
R-increasing (decreasing) £ rough.
Proposition 3.12. Let (U,7g,0) beaGOTASand A BcU . Then
(1) AgB—)E'"C( )Cﬁlnc(B) (Ag B_)BDec( )CEDEC( ))
(2 B"™(ANB)c
3) B™(AUB)2
Proof.

(A)NB™(B) (B™(ANB)< B> (A)nB™ (B)).
" (AU BT (B) (B (AUB)2 B (A)V B> (B)),

cp"™
B
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(1) Omitted.
(2 B (ANB)=(AN

(3) B (AUB)=

2ﬂlnc( )Uﬁlnc( )
One can prove the case between parentheses.
Proposition 3.13. Let (U,7,,0) beaGOTASand A B
c

c
() AcB B, (A< B, (B) (AcBf, (A)cp, (B )

(2) ﬁlnc(AmB)gﬁlnc(A)mélnc(B) (ED (AﬂB)gé ( ) é (B))
(3) Elnc(AUB)Qﬁlnc(A)uélnc(B) (ZDec(AUB) é ( )UéDec(B) '
Proof.

(1) Easy.

(2 B, (ANB)=(ANB)NR"™ (B.m

One can prove the case between parentheses.
Proposition 3.14. Let (U,7z,p) bea GOTAS and A B cU . If A is R-increasing (resp. decreasing) exact

then A is S-increasing (resp. decreasing) exact.

Proof.
Let A be R-increasing exact. Then R"™ (A)=R,,(A). Therefore 5" (A)=R"™(A), B, (A)=Ry(A).
Thus B" (A)=p, (A).HenceAisR-increasing £ exact.
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One can prove the case between parentheses.
Proposition 3.15. Let (U, 7, p) beaGOTASand AcU . Then

Ric (A) B, (A) (Row (A) < By, (A).

Proof.
Since R (A)c AcR™(A) and Ry, (A) S Ry (R"™(A)). Then

Rie (A) < R™ (R (A)) < R™ (R (R™ (A))).

Therefore Ry, (A)c Avaﬁ " (Rue (R (A))) ] Thus Ry (A)< B, (A).
One can prove the case between parentheses.
Proposition 3.16. Let (U,7,,0) beaGOTASand AcU . Then

B"™ (A)=R™ (A) (B (A)<R™ (A)).
)

Rise (R™ (R (A))) S Rire (R™ (A)) = R™ (A).

Therefore AUR|, (F_Q'”C (Rine (A))) cR"™(A). Hence B"™ (A)c R™(A).

Definition 3.17. Let (U,74,p) beaGOTASand AcU . Then

(1) By (A)=T"(A)=, (A) (resp. Bjp (A)=T"(A)- ], (A)), is increasing (resp. decreasing) j
boundary region. B

(2) Pos;c(A)=1], (A) (resp. Pos, (A)= ], (A)), isincreasing (resp. decreasing) j positive region.

(3) Neg,. (A)= U T°°(A) (resp. Negp, (A)=U —7"(A)), is increasing (resp. decreasing) j negative
region. Where l the near lower approximations s.t. je{ﬁ,y :

Proposition 3.18. Let (U,7,,p) beaGOTASand A BcU . Then

(1) Neg,,.(AuB)c Neg,,. (A)UNeg,,. (B) (Neg,p, (AUB)c Neg,p, (A)UNeg o (B)).

(2) Neg,,.(AnB)2Neg,, (A)nNeg,,. (B) (Neg,p,(ANB)2Neg,p, (A)NNeg,p,. (B)).
Proof.

(1) Neg,,,. (AUB)=U ~[ (AUB) L[ R™R DeC(AuB)uRDeCRD“(AuB)H

(
U - [(AUB) [ R (Roue (A)URom (B)) 0 R (R (A)UR™ (8))]]
(

[Au )U[R**R Dec( )uRDec Dec(B)uRDeCRDGC(A)uBDeCF_QDeC(B)H
gU—[Au[ﬁ RDEC(A)UBD%RD“(A)HU[BU[RD“BDEC(B)URDeCRDEC(B)ﬂ
cu-[A R RDeC(A)uRDecﬁDe"(A)HmU—Bu[ﬁDECBDeC(B)uRDeCRD“(B)]

< Neg .. (A)nNeg,, . (B).

(2) Neg, . (AN B) =U ~[ (AN B) U R™ Ry, (AN B)URpR™ (AN B) ]
;u-[(AmB)u[ﬁD“(BDeC )\ Roge (B)) U Roge (R (A mﬁD“(B))ﬂ
SU - [ (AN B)U[ R% Rog, (A) MR R (B) U R0 R™ (A) N RpwR™ (B) ]
QU—[Au[ﬁDe°BDec(A)uBDecﬁDec(A)ﬂm[Bu[ﬁDeCBw(B)uRDSCRD“(B)]]
QU—[Au[ﬁD“BDec(A)uBDecﬁDec(A)ﬂuU —[Bu[F?D“BDeC(B)uRDeCRDEC(B)ﬂ

> Neg,,,. (A)UNeg,, (B).
One can prove the case between parentheses.
Proposition 3.19. Let (U,7,,0) beaGOTASand A BcU . Then
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1) NegﬁmcEAu B;g NegﬂmcEA;uNegmncEB; (NegﬂDeCEAu B%g NegﬁDECEA;uNegﬁDeCEB;).
(2) Negﬁmc ANnB ;>NegﬂInc A r\NegﬂInC B (NegﬂDec ANB ;NegﬁDEC A r\NegﬁDec B)).
Proof.

URoe (R Row (AUB)) |

C
Ry
g
3
—_
Zy)
w)
3
—_
Ry
o
3
—_
>
N’
C
Ry
o
3
—_
v9)
~
N—
—
| I—

(
:U—[(AmB)uBDec(ﬁD“(BDeC(A)mRDeC(B)))J

(R™ (Roe (A))) " Roxe (R™ (Rowe (B))) ]
)]
B)))

QU—[AuBDeC(RDEC(BDec(A)))mBURDGC(RDeC Rpee B)
;U—AuRDec(F?D“(RDeC( )))uU B U R pee (R (Rpec (
QNEQﬁmc( )UNEanc( )

One can prove the case between parentheses.
Proposition 3.20. Let (U, 7z, p) bea GOTASand AcU . Then

Sine (A) S 710e (A) € B0, (A) (8o (A) € 75, (A) € B (A)):
Proof.
Let xeS,,.(A). Then xeR"™ (R, (A)). Therefore x e R"™ (R, (A))UR (R™(A)). Thus
X e Am[ﬁ'm (Rine (A)) URe (R™ (A))]

and thus xey (A).
Hence

Si(A) <7, (A) @)
Since xeR,,(A),then xeR"™ (A). Therefore xeR,, (ﬁ'“ (A)) .
Thus xe R"™ (Bmc (R" (A))) andthus xe ANR"™ (R,nc (R" (A))) Hence
xef, (A) ¥}
From (1) and (2) we have,
Sinc(A) =7, (A) = B, (A).

One can prove the case between parentheses.
Proposition 3.21. Let (U,7,,p) beaGOTASand AcU . Then

B (A < 7 (A) =™ (A) (B (A)= 7 (A)= 5 (n)).

Proof.
Let xe 8" (A). Then xe Ay R,nC(F_Q'”C( e ( )) Therefore xe A or xe R,nc(ﬁ °(B,nC(A) . Thus

xeA or xeR"™(R,.(A)). So xe AUR™ (R, (A)), and so xEAU[R'"C(B,HC(A))UB,HC(R'N(A)].
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Thus xe7"™(A). Hence

Blnc(A)g7lnc(A). (1)
Since xe7"™(A), XxeA or xeR,(R™(A)),then xe AUR,,(R"™ (A)). Therefore
xeS"™(A) (2)

From (1) and (2) we have, 8" (A)c 7" (A)cS"™(A)

One can prove the case between parentheses. '

Definition 3.22. Let (U,rR,p) be a GOTAS and A is a non-empty finite subset of U. Then the increasing
(decreasing) j accuracy of a finite non-empty subset A of U is given by:

i (A)
) A — —Inc , ’ .
njlnc( ) -j-mc (A)| Je {ﬂ 7/}
Proposition 3.23. Let (U,rR,p) be a GOTAS and A non-empty finite subset of U . Then we have
. ()
7(A) < 7j0e (A) (7(A) <7jpee (A)), forall je{B,y}, where U(A):W

Proof. Omitted.
In the following example we illustrate most of the properties that have been proved in the previous propositions.

Example 3.24. Let U={ab,c,d}, U/R={{a}.{a,b}.{c.d}}, 7, ={U,4.{ab} {c.d}.{a}.{ad.c}},

:{U,¢,§c,df,{a,b},{b,c,d},{b}} and p={(a,a),(b,b),(c.c),(d,d),(ab),(b,d),(ad),(ac).(cd)}.

For A={a,c}, we have:

Row (A)={a}, R% (Roq (A))={ab}, RO (A)=U, Rog (R (A))=U.
Spec (A)={a}, S™(A)=U, By (A)={b,c,d}, Negy, =¢.
Vo (A)=ANU=A, 77 (A)=AUU =U, B,oe. (A)={b,d}, Negmc:¢.

Bow(A)=ANU = A, B (A)={ab.c}, By (A)=1{b}, Neg, ={d|
Proposition 3.25. Let (U, 7, 0) beaGOTASand AcU . Then we have

Bﬁlnc (A) ylnc (A) c BSlnc (A) (B/)‘Dec (A) < ByDec (A) = BSDec (A))
Proof. Omitted.
Remark 3.26. B, (A) < By (A) (B,pec (A) S Brpee (A))-
Remark 3.27. B, (A) < By (A) (Bypec (A) < Brpee (A))-

Proposition 3.28. Let (U,rR,pg be a GOTAS and A be a non-empty finite subset of U . Then

77Inc (A) aS nylnc (A) < nﬂlnc (A) (77Dec A) = 77;/Dec (A) < nﬂDec (A) )
Proof. Omitted.

Proposition 3.28. Let (U,7;,0) beaGOTASand AcU.Then 7, (A) gélnc(A)(ZDec(A)géDec(A))
Proof. Let xey, (A)=A n[R"™ (R (A)) VR (R™(A))]. Then xeA and
XeR"™ (R (A)) UR (R™(A))

Therefore Xe A and [xeR"™ (R, (A)) of xe Ry, (R™(A))]. Thus xe A and xe R, (R™(A)) and
thus xe A andxeR"™ (B,nc (F_{'”° (A))) Hence xe AN R'”°( ,nc R'”C ) Therefore y (A)c B, (A).

One can prove the case between parentheses.

4. Conclusion

In this paper, we generalize rough set theory in the framework of topological spaces. Our results in this paper
became the results about of y, £ approximation in [2] in the case of p is the equal relation. Also, the new
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approximation which we give became as Pawlak s approximation in the case of p is the equal relation and R is
the equivalence relation. This theory brings in all these techniques to information analysis and knowledge
processing.
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