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Abstract 
This article is a contribution to the study of the automorphism groups of ( )v k−4 , ,λ  designs. Let 

( )= ,    be a non-trivial ( )q k− +34 1, ,4  design where nq += 2 13  for some positive integer 

n ≥ 1 , and ( )G Aut≤   is block-transitive. If the socle of G is isomorphic to the simple groups of 

lie type ( )G q2
2 , then G is not flag-transitive. 
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1. Introduction 
For positive integers t k v≤ ≤  and λ , we define a ( ), ,t v k λ−  design to be a finite incidence structure 

( ),=   , where   denotes a set of points, v= , and   a set of blocks, b= , with the properties 
that each block is incident with k points, and each t-subset of   is incident with λ  blocks. A flag of   is 
an incident point-block pair ( ),x B  with x is incident with B, where B∈ . We consider automorphisms of 
  as pairs of permutations on   and   which preserve incidence structure. We call a group ( )G Aut≤   
of automorphisms of   flag-transitive (respectively block-transitive, point t-transitive, point t-homogeneous) if G 
acts transitively on the flags (respectively transitively on the blocks, t-transitively on the points, t-homogeneously on 
the points) of  . For short,   is said to be, e.g., flag-transitive if   admits a flag-transitive group of auto-
morphisms.  

For historical reasons, a ( ), ,t v k λ−  design with 1λ =  is called a Steiner t-design (sometimes this is also 
known as a Steiner system). If t k v< <  holds, then we speak of a non-trivial Steiner t-designs.  
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Investigating t-designs for arbitrary λ , but large t, Cameron and Praeger proved the following result:  
Theorem 1. ([1]) Let ( ),=    be a ( ), ,t v k λ−  design. If ( )G Aut≤   acts block-transitively on  , 

then 7t ≤ , while if ( )G Aut≤   acts flag-transitively on  , then 6t ≤ .  
Recently, Huber (see [2]) completely classified all flag-transitive Steiner t-designs using the classification of 

the finite 2-transitive permutation groups. Hence the determination of all flag-transitive and block-transitive 
t-designs with 2λ ≥  has remained of particular interest and has been known as a long-standing and still open 
problem.  

The present paper continues the work of classifying block-transitive t-designs. We discuss the block-transitive 
( )4 , , 4v k−  designs and Ree groups. We get the following result: 

Main Theorem. Let ( ),=    be a non-trivial ( )34 1, , 4q k− +  design, where 2 13 nq +=  for some posi-

tive integer 1n ≥ , and ( )G Aut≤   is block-transitive. If ( )Soc G , the socle of G, is ( )2
2G q , then G is not 

flag-transitive. 
The second section describes the definitions and contains several preliminary results about flag-transitivity 

and t-designs. In 3 Section, we give the proof of the Main Theorem. 

2. Preliminary Results 
The Ree groups ( )2

2G q  form an infinite family of simple groups of Lie type, and were defined in [3] as sub-
groups of ( )7,GL q . Let ( )GF q  be finite field of q elements, where 2 13 nq +=  for some positive integer 

1n ≥  (in particular, 27q ≥ ). Let Q is a Sylow 3-subgroup of G, K is a multiplicative group of ( )GF q  and 
( )2

2G q  is a group of order ( )( )3 3 1 1q q q+ −  (see [4]-[6]). Hence ( )2
2G q  is a group of automorphisms of 

Steiner ( )33 1, 1,1q q− + +  design and acts 2-transitive on 3 1q +  points (see [7]).  
Here we gather notation which are used throughout this paper. For a t-design ( ),=    with ( )G Aut≤  , 

let r denotes the number of blocks through a given point, xG  denotes the stabilizer of a point x∈  and BG  
the setwise stabilizer of a block B∈ . We define xB x BG G G=  . For integers m and n, let ( ),m n  denotes 
the greatest common divisor of m and n, and |m n  if m divides n. 

Lemma 1. ([2]) Let G act flag-transitively on ( ), ,t v k λ−  design ( ),=   . Then G is block-transitive 
and the following cases hold:  

1) G
x xG G x G v= = , where x∈ ;  

2) G
B BG G B G b= = , where B∈ ;  

3) ( ), G
xB xBG G x B G bk= = , where x B∈ .  

Lemma 2. ([8]) Let ( ),=    is a non-trivial ( ), ,t v k λ−  design. Then  

( ) ( )( )1 2 1 .v t k t k tλ − + ≥ − + − +  

Lemma 3. ([8]) Let ( ),=    is a non-trivial ( )4 , ,v k λ−  design. Then  
1) bk vr= ;  

2) 
( )( )( )
( )( )( )

1 2 3
1 2 3

v v v v
b

k k k k
λ − − −

=
− − −

.  

Corollary 1. Let ( ),=    is a non-trivial ( )4 , , 4v k−  design. If 3 1v q= + , Then 3 2k q q< + .  
Proof. By Lemma 2, we have ( ) ( )( )4 3 2 3v k k− ≥ − − . If 3 1v q= + , then  

( ) ( )( )34 2 2 3 .q k k− ≥ − −  

Hence  
2 35 4 14 0.k k q− − + ≤  

We get  
35 16 31

3 2 .
2
q

k q q
+ −

≤ < +  
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3. Proof of the Main Theorem 
Suppose that G acts flag-transitively on ( )4 , , 4v k−  design and 3 1v q= + . Then G is block-transitive and 
point-transitive. Since ( ) ( )2

2T G q G Aut T= ≤ , we may assume that :G T α=  and ( ):G T G α=   
by Dedekind’s theorem, where 3: x xα → , ( )x GF q∈  and α is an automorphism of field ( )GF q . Let 

3 fq = , 2 1f n= +  is odd, and mα = , then |m f . Obviously, ( )( )3 3 1 1G q q q m= + − .  
First, we will proof that if g G∈  fixes three different points of  , then g must fix at least four points in 
 .  

Suppose that g G∈ , ( ) 3Fix g ≥ , ( )x Fix g∈  . Let P is a normal Sylow 3-subgroup of xG . Then    
is transitive on { }x− . By 3 1v q= + , we have { } 3P x q= − = . Hence P acts regularly on { }x− . 

There exist h P∈  such that hz y= , where for all { },y z x∈ − . Since xg G∈ , h P∈  and P is a normal  
Sylow 3-subgroup of xG , we have 1 1h ghg P− − ∈ . On the other hand,  

1 1 1 1 1
.h ghg ghg hg gz y y z z

− − − − −
= = = =  

So 1 1 1h ghg− − = , that is gh hg= . Hence ( )Ph C C g∈ = . We get that C is transitive on ( ) { }Fix g x− . 

Hence ( ) { } |Fix g x C− . By C P≤ , we have ( ) { } |Fix g x P− . Note that 3 33 fP q= = , so  

( ) { } 33| fFix g x− . Hence ( ) { } ( )1 mod 2Fix g x− ≡ . It follows that ( ) ( )0 mod 2Fix g ≡ . This means 

that g must fix at least four points in  .  
Now, we can continue to prove our main theorem. Obviously, α  fixes three points of   which are 

0,1,∞ . Then 0,1,Gα ∞≤ . Hence α  must fix at least five points in  . Since G acts block-transitively on 
( )4 , , 4v k−  design, we can find four blocks, let 1B , 2B , 3B  and 4B , containing four points which is fixed 

by α. If α exchange 1B , 2B , 3B  and 4B , then 2 | α  which is impossible. Thus α must fix 1B , 2B , 3B   
and 4B . We have 

1 2 3 40 0 0 0B B B BG G G G Gα ≤ = = = . Therefore T acts also flag-transitively on  

( )34 1, , 4q k− +  design. We may assume G T=  and ( )( )3 3 1 1G q q q= + − .  

Since G acts flag-transitively on ( )34 1, , 4q k− +  design, then G is point-transitive. By Lemma 1(1), we get 

( ) ( )
( )

3 3
3

3

1 1
1 .

1x

q q qG
G q q

v q

+ −
= = = −

+  
Again by Lemma 3(2) and Lemma 1(3),  

( ) ( ) ( )
( ) ( ) ( )

4 1 2 3
.

1 2 3
x

xB

v Gv v v v
b

k k k k k G
− − −

= =
− − −  

Thus 

( )( )( )
( )( )( )

( )( )( ) ( )
( )( )

( )( )( )
( )( )

3

3 3 3 2 3

1 2 3 1 2 3 1 1 2 3
.

4 1 2 3 4 1 2 4 1 2
x

xB

k k k G k k k q q k k k
G

v v v q q q q q q
− − − − − − − − − −

= = =
− − − − − + + −

 

By Lemma 2,  

( )( ) ( )( )( ) ( ) ( ) ( )( )2 3 34 1 2 1 2 3 1 4 3 4 1 2 ,xBG q q q k k k k v k q+ + − = − − − ≤ − ⋅ − = − −  

Again by Corollary 1,  

( )2 2

2 211 1 27 ,
1 1xB

q qkG q
q q q q

+−
≤ ≤ ≤ < ≥

+ + + +
 

This is impossible. 
This completes the proof the Main Theorem. 
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