Predicting Reference Evaporation for the Ethiopian Highlands

HTML  XML Download Download as PDF (Size: 5473KB)  PP. 1244-1269  
DOI: 10.4236/jwarp.2017.911081    1,389 Downloads   3,643 Views  Citations

ABSTRACT

Water is likely the most limiting factor in increasing agricultural production in large parts of Africa. Reference evaporation (ET0) is a key hydrological parameter to use efficiently the scarce supply. Several methods are available for predicting reference evaporation, but the accuracy of any of the methods has not been established for the Ethiopian highlands. The objective of this study is, therefore, to select the best methods for calculating the reference evaporation ET0. For the section, meteorological data of the Bahir Dar station were used, because all data needed for this study including the Class A pan Evaporation were recorded on a daily basis. Pan evaporation was considered as the best estimator of the reference evaporation. The results showed that the FAO-Penman Monteith (using solar radiation, wind speed, temperature and relative humidity) and Enku method (using only maximum daily temperatures) have acceptable daily ET0 ranges and predicted to Class A pan evaporation with correlation coefficients greater than 90% in a monthly basis. Next best was the Thornthwaite’s method with correlation coefficient of 89% with pan evaporation. Piche methods performed relatively well with correlation coefficient of greater than 70%. Blaney-Criddle, Priestley & Taylor, and Hargreaves performed the poorest in predicting pan evaporation. These methods should be recalibrated for local condition and therefore not recommended for use in the Ethiopian highlands. In summary, the FAO-Penman Monteith is recommended for locations where the input data are available; otherwise, the Enku method using maximum daily temperature is best for estimating the reference evaporation.

Share and Cite:

Adem, A. , Aynalem, D. , Tilahun, S. and Steenhuis, T. (2017) Predicting Reference Evaporation for the Ethiopian Highlands. Journal of Water Resource and Protection, 9, 1244-1269. doi: 10.4236/jwarp.2017.911081.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.