An Inexpensive and Simple Experimental Approach for the Estimation of Solute Import into Groundwater and Subsequent Export Using Inflow/Outflow Data

HTML  XML Download Download as PDF (Size: 2134KB)  PP. 908-930  
DOI: 10.4236/jwarp.2017.98061    1,015 Downloads   1,709 Views  
Author(s)

ABSTRACT

In agricultural catchments where groundwater (GW) base flow discharge contributes substantially towards stream flow, the information linking GW inflow/outflow with contaminant import/export is scarce. However, this information is essential to address aquatic ecosystem health hazard/risk associated with nitrate export and subsequent loading in sensitive surface water bodies (SWB). The objectives of this study were to assess the temporal dynamics of (i) rain water inflow/outflow behaviour in three agricultural catchments in the humid tropics of far-northeast Queensland of Australia, (ii) solute import via inflow and subsequent export in outflow, and (iii) the association between GW inflow/outflow and solute import/export. Approximately 71% of the average seasonal rainfall percolated (inflow) into the porous basaltic regolith of the Johnstone River Catchment (JRC) compared with 44% into the alluvial regolith in the Mulgrave River Catchment (MRC) and 29% into the metamorphic regolith in the Tully River Catchment (TRC), respectively. The outflows from the basaltic, alluvial, and metamorphic regoliths were 56%, 36%, and 55% of the inflows, respectively. The cumulative nitrate import per season was 25 k/ha in the JRC compared with 11 kg/ha in MRC and 34 kg/ha in TRC. The corresponding exports were 24 kg/ha, 8 kg/ha 26 kg/ha in JRC, MRC, and TRC, respectively. The total dissolved solute (TDS) exports were 82%, 77%, 75%, of the corresponding imports in JRC, MRC, and TRC, respectively. Simple correlations indicated that nitrate export was positively correlated with the outflow in each one of the regolith and similar trends were observed between inflow and import. The import/export mass balance for nitrate shows that 73% to 96% of the imports were exported during the same rainy season, suggesting the potential for nitrate associated ecosystem health hazard/risk in sensitive SWB receiving the outflows.

Share and Cite:

Rasiah, V. (2017) An Inexpensive and Simple Experimental Approach for the Estimation of Solute Import into Groundwater and Subsequent Export Using Inflow/Outflow Data. Journal of Water Resource and Protection, 9, 908-930. doi: 10.4236/jwarp.2017.98061.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.