Modeling the Prospects of Plug-In Electric Buses to Reduce GHG Emissions and Cost While Meeting Route Demands: A Case Study of the “Unitrans” Bus Fleet Serving the Davis, California Urbanized Area

HTML  XML Download Download as PDF (Size: 745KB)  PP. 164-173  
DOI: 10.4236/sgre.2016.75013    2,781 Downloads   3,870 Views  

ABSTRACT

As university campuses look to decrease their greenhouse gas emissions, plug-in electric buses may provide a low carbon alternative to conventionally fossil-powered buses. This study investigates the viability for Unitrans, the bus service for the greater Davis area and the university campus, to replace current compressed natural gas buses with plug-in electric versions. This study presents an inventory of market available electric buses, their associated costs, incentives, and infrastructure concerns, and compares projected energy use, net present cost, and greenhouse gas emissions with their CNG counterparts. ADVISOR vehicle simulation software is used to estimate the energy use of a typical electric bus (New Flyer Xcelsior XE40 300 kW) and compare to the current CNG model (Orion V) along an actual Unitrans route. The model estimates that the selected bus can travel 146 miles on a single charge, with a fuel economy of 1.75 kWh per mile, which meets the service requirements. Results for bus replacement schedules between 5 and 49 in the 12-year analysis period indicate that between 1600 and 22,000 MT of carbon can be avoided. The net present cost analysis indicates that the potential savings from the replacement of a single CNG bus with an electric bus (with available incentives) ranges from $146,000 - $211,000 per bus over its lifetime, depending on infrastructure costs.

Share and Cite:

Kornbluth, K. , Mickle, C. and Hestmark, K. (2016) Modeling the Prospects of Plug-In Electric Buses to Reduce GHG Emissions and Cost While Meeting Route Demands: A Case Study of the “Unitrans” Bus Fleet Serving the Davis, California Urbanized Area. Smart Grid and Renewable Energy, 7, 164-173. doi: 10.4236/sgre.2016.75013.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.