Impact of Distributed Generation on Smart Grid Transient Stability

HTML  Download Download as PDF (Size: 1213KB)  PP. 99-109  
DOI: 10.4236/sgre.2011.22012    11,844 Downloads   23,312 Views  Citations

Affiliation(s)

.

ABSTRACT

In the 21st century Smart Grid and Renewable Energy technologies are an important issue with regards to global climate change problem and energy security. The evolution of current conventional or centralized generation in form of distributed generation and Smart Power Grid (SPG) has great opportunity and potentially can eradicate several issues associated with energy efficiency, energy security and the drawback of aging power system infrastructures. In order to meet the rising electrical power demand and increasing service quality as well as reducing pollution, the existing power grid infrastructure should be developed into Smart Grid (SG) that is flexible for interconnectivity with the distributed generation. However, integrating distributed generation to power system causes several technical issues especially system stability. To make the power grid become “smarter”, particularly in terms of stability, Flexible AC Transmission System (FACTS) device especially Static VAR Compensator (SVC) is used. This paper explores Smart Grid technologies and distributed generation systems. Furthermore, it discusses the impact of distributed generation on Smart Grid, particularly its system stability after installing distributed generation in the Smart Grid. This was done by examining the system stability during interconnection and faults on the system and validated with Dig-SILENT Power Factory Software V 13.2.

Share and Cite:

N. Hidayatullah, Z. Paracha and A. Kalam, "Impact of Distributed Generation on Smart Grid Transient Stability," Smart Grid and Renewable Energy, Vol. 2 No. 2, 2011, pp. 99-109. doi: 10.4236/sgre.2011.22012.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.