Black Holes—Information Models

HTML  XML Download Download as PDF (Size: 292KB)  PP. 128-140  
DOI: 10.4236/ojm.2013.34019    6,071 Downloads   9,600 Views  
Author(s)

ABSTRACT

Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical essence information is heterogeneity of matter and energy. The universal measure of physical heterogeneity of information is the Shannon in- formation entropy. It is important to note that the Neumann entropy cannot be applied as the universal measure of het- erogeneity because it is equal to zero for structured pure state. Therefore information is inseparably connected with matter and energy. The informatics laws of nature are: the basic law of Zeilinger’s quantum mechanics postulates that the elementary physical system (in particular, fundamental particles: quarks, leptons,…) bears one bit of information, the law of simplicity of complex systems, the law of uncertainty (information) conservation, the law of finiteness of complex systems characteristics, the law of necessary variety by W. Ashby, and the theorem of K. Gödel. The law of finiteness of complex systems characteristics and the principle of necessary variety by W. Ashby impose restrictions on the topology and symmetry of the universe. The author’s works testify about the practicality of information laws simultaneously with physical rules for cognition of the Universe. The results presented in this paper show the effectiveness of informational approach to studying the black holes. The article discusses the following questions: The volume of information in the black hole, Emission and absorption of usual substance by a black hole, Formation and development (changing) of black holes, Black hole merger. Black hole is called optimal if information content is minimal at the University region. Optimal black holes can exist when at least the two types of substance are available in the Universe: with non-linear and linear correspondence between information content and mass. Information content of optimal black hole is proportional to squared coefficient correlating information content with mass in usual substance and in inverse proportion to coefficient correlating information content with black hole mass. Concentration of mass in optimal black hole minimizes information content in the system “usual substance—black holes”. Minimal information content of the Universe consisting of optimal black holes only is twice as less as information content available of the Universe of the same mass filled with usual substance only. An information approach along with a physical one allows obtaining new, sometimes more general data in relation to data obtained on the ground of physical rules only.

Share and Cite:

I. Gurevich, "Black Holes—Information Models," Open Journal of Microphysics, Vol. 3 No. 4, 2013, pp. 128-140. doi: 10.4236/ojm.2013.34019.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.