Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050

HTML  Download Download as PDF (Size: 1624KB)  PP. 191-197  
DOI: 10.4236/ajcc.2013.23019    3,713 Downloads   6,765 Views  Citations

ABSTRACT

Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the future. The study was based on the daily data of future B2 climate scenario (2011-2050) and baseline climate condition (1961-1990) from high resolution regional climate model PRECIS (~50 km grid interval). According to climatic divisions of cropping systems in China, the active accumulated temperature stably passing the daily average temperature of 0°C, the extreme minimum temperature and the termination date passing the daily average temperature of 20°C which were justified by dominance as a limitation of different cropping systems in zero-grade zone were investigated. In addition, the possible trajectories of different cropping systems in China from 2011 to 2050 were also analyzed and assessed. Under the projected future B2 climate scenario, from 2011 to 2050, the northern boundaries of double cropping area and triple cropping area would move northward markedly. The most of the present double cropping area would be replaced by the different triple cropping patterns, while current double cropping area would shift towards areas presently dominated by single cropping systems. Thus the shift of multiple cropping areas would lead to a significant decrease of single cropping area. Compared with China’s land area, the percentage cover of single cropping area and double cropping area would decrease slowly, while percentage cover of triple cropping area would gradually increase.

Share and Cite:

J. Zhao and J. Guo, "Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050," American Journal of Climate Change, Vol. 2 No. 3, 2013, pp. 191-197. doi: 10.4236/ajcc.2013.23019.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.