Share This Article:

Application of Probabilistic Model for Marine Steam System Failure Analysis under Uncertainty

Full-Text HTML XML Download Download as PDF (Size:403KB) PP. 21-34
DOI: 10.4236/ojsst.2018.82003    224 Downloads   381 Views


In ship and offshore operations, machinery systems have associated operational hazard because of the prevailing harsh environment. Therefore, the need for an overall evaluation of the associated risk and failures of these systems, such as the marine steam boiler, is crucial to the industry. The concept of probability risk model is used to model the failure mode considering the overall risk associated with the system as a whole. The rate of occurrence of the failure that described the basic events as represented by the fault tree was developed to model the marine steam system. This specific event was implemented and evaluated to estimate the failure frequencies of the overall systems, based on the available failure rate in core literatures. A risk model which is hazard severity weight with its failure frequencies, and the time of operation was applied in the analysis. The probability of failure of the boiler system was estimated at 0.323225 at 35,040 operating hours with hazard severity weight of catastrophic if it occurs. The associated failure frequency calculated for the period is 1.114 × 10-5. The over failure frequency of the marine steam system for the period of consideration is conditioned on the pre-defined minimum cut sets of the top event. This therefore agreed with the fact that the basic events with their failure frequencies will lead to the catastrophic failure of the entire system within the period if the maintenance plan is not proactive.

Cite this paper

Adumene, S. and Nitonye, S. (2018) Application of Probabilistic Model for Marine Steam System Failure Analysis under Uncertainty. Open Journal of Safety Science and Technology, 8, 21-34. doi: 10.4236/ojsst.2018.82003.

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.