Cks1: Structure, Emerging Roles and Implications in Multiple Cancers

HTML  Download Download as PDF (Size: 292KB)  PP. 1341-1354  
DOI: 10.4236/jct.2013.48159    3,701 Downloads   5,769 Views  Citations

ABSTRACT

Deregulation of the cell cycle results in loss of normal control mechanisms that prevent aberrant cell proliferation and cancer progression. Regulation of the cell cycle is a highly complex process with many layers of control. One of these mechanisms involves timely degradation of CDK inhibitors (CKIs) like p27Kip1 by the ubiquitin proteasomal system (UPS). Cks1 is a 9 kDa protein which is frequently overexpressed in different tumor subtypes, and has pleiotropic roles in cell cycle progression, many of which remain to be fully characterized. One well characterized molecular role of Cks1 is that of an essential adaptor that regulates p27Kip1 abundance by facilitating its interaction with the SCF-Skp2 E3 ligase which appends ubiquitin to p27Kip1 and targets it for degradation through the UPS. In addition, emerging research has uncovered p27Kip1-independent roles of Cks1 which have provided crucial insights into how it may be involved in cancer progression. We review here the structural features of Cks1 and their functional implications, and also some recently identified Cks1 roles and their involvement in breast and other cancers.

Share and Cite:

V. Khattar and J. Thottassery, "Cks1: Structure, Emerging Roles and Implications in Multiple Cancers," Journal of Cancer Therapy, Vol. 4 No. 8, 2013, pp. 1341-1354. doi: 10.4236/jct.2013.48159.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.