Modeling Multiple Quantum Well and Superlattice Solar Cells

HTML  XML Download Download as PDF (Size: 1274KB)  PP. 235-245  
DOI: 10.4236/nr.2013.43030    6,036 Downloads   9,440 Views  Citations

ABSTRACT

The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to ultra-high efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor. A theoretical model has been developed to study the performance of the strain-balanced GaAsP/InGaAs/GaAs MQWSC, and GaAs/GaInNAs MQWSC or SLSC. Our results show that conversion efficiencies can be reached which have never been obtained before for a single-junction solar cell.

Share and Cite:

C. Cabrera, J. Rimada, M. Courel, L. Hernandez, J. Connolly, A. Enciso and D. Contreras-Solorio, "Modeling Multiple Quantum Well and Superlattice Solar Cells," Natural Resources, Vol. 4 No. 3, 2013, pp. 235-245. doi: 10.4236/nr.2013.43030.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.