Difference of Curcumin Content in Curcuma longa L. (Zingiberaceae) Caused by Hybridization with Other Curcuma Species
Hiroshi Hayakawa, Yukio Minaniya, Katsura Ito, Yoshinori Yamamoto, Tatsuya Fukuda
.
DOI: 10.4236/ajps.2011.22013   PDF    HTML     11,526 Downloads   23,918 Views   Citations

Abstract

Curcumin, which is traditionally known to have effects on various types of diseases in humans, is found in Curcuma longa L. Previous reports have indicated that the curcumin content varies between the different lines of this species. To clarify the differences in the amounts of curcumin between the lines, we investigated the outcomes of cultivation ex-periments with the hybridization or introgression between C. longa and other Curcuma species using the matK gene of chloroplast DNA (cpDNA) and the external transcribed spacer (ETS) of nuclear DNA (nrDNA). The results show that there is heterogeneity of the ETS and incongruence between the matK and the ETS phylogenetic trees, suggesting that hybridization and introgression had taken place in the diversification of the various lines of C. longa. Moreover, al-though all of the lines had the same cpDNA haplotype of C. longa, the lines of homogeneous C. longa had a high con-tent of curcumin, whereas the lines created by hybridization and introgression with other Curcuma species had a me-dium or low level. These results suggest that the difference of curcumin content among the various lines of C. longa was caused by hybridization and introgression with other Curcuma species.

Share and Cite:

H. Hayakawa, Y. Minaniya, K. Ito, Y. Yamamoto and T. Fukuda, "Difference of Curcumin Content in Curcuma longa L. (Zingiberaceae) Caused by Hybridization with Other Curcuma Species," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 111-119. doi: 10.4236/ajps.2011.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. D. Tanksley and S. R. McCouch, “Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild,” Science, Vol. 277, No. 5329, 1997, pp. 1063-1066. doi:10.1126/science.277.5329.1063
[2] A. Asai and T. Miyazawa, “Dietary Curcuminoids Prevent High-Fat Diet-Induced Lipid Accumulation in Rat Liver and Epididymal Adipose Tissue,” Journal of Nutrition, Vol. 131, No. 11, 2001, pp. 2932-2935.
[3] A. C. Beynen, J. J. Visser and J. A. Schouten, “Inhibitory Effect on Lithogenesis by Ingestion of a Curcuma Mixture (Temoe Lawak Singer),” Journal of Food Science Technology, Vol. 24, 1987, pp. 253-256.
[4] P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara and B. B. Aggarwal, “Curcumin and Cancer: An ‘Old-Age’ Disease with an ‘Age-Old’ Solution,” Cancer Letters, Vol. 267, No. 1, 2008, pp. 133-164. doi:10.1016/j.canlet.2008.03.025
[5] S. Aggarwal, Y. Takada, S. Singh, J. N. Myers and B. B. Aggarwal, “Inhibition of Growth and Survival of Human Head and Neck Squamous Cell Carcinoma Cells by Curcumin via Modulation of Nuclear Factor-Κb Signaling,” International Journal of Cancer, Vol. 111, No. 5, 2004, pp. 679-692. doi:10.1002/ijc.20333
[6] Z. Wang, Y. Zhang, S. Banerjee, Y. Li and F. H. Sarkar, “Inhibition of Nuclear Factor Kappab Activity by Genistein is Mediated via Notch-1 Signaling Pathway in Pancreatic Cancer Cells,” International Journal of Cancer, Vol. 118, No. 8, 2006, pp. 1930-1936. doi:10.1002/ijc.21589
[7] N. M. Weir, K. Selvendiran, V. K. Kutala, L. Tong, S. Vishwanath, M. Rajaram, S. Tridandapani, S. Anant and P. Kuppusamy, “Curcumin Induces G2/M Arrest and Apoptosis in Cisplatin-Resistant Human Ovarian Cancer Cells By Modulating Akt and p38 MAPK,” Cancer Biology and Therapy, Vol. 6, No. 2, 2007, pp. 178-184. doi:10.4161/cbt.6.2.3577
[8] E. Liu, J. Wu, W. Cao, J. Zhang, W. Liu, X. Jiang and X. Zhang, “Curcumin Induces G2/M Cell Cycle Arrest in a p53-Dependent Manner and Upregulates Ing4 Expression in Human Glioma,” Journal of Neuro-Oncology, Vol. 85, No. 3, 2007, pp. 263-270. doi:10.1007/s11060-007-9421-4
[9] K. Aoi, K. Kaburagi, T. Seki, T. Tobata, M. Sarak and M. Kuroyanagi, “Studies on the Cultivation of Turmeric (Curcuma longa L.) I: Varietal Differences in Rhizome Yield and Curcuminoid Content,” Bulletin of National Institute of Hygiene Science, Vol. 104, 1986, pp. 124-128.
[10] H. Hayakawa, T. Kobayashi, Y. Minamiya, K. Ito, A. Miyazaki, T. Fukuda and Y. Yamamoto, “Development of a Molecular Marker to Identify a Candidate Line of Turmeric (Curcuma longa L.) with a High Curcumin Content,” American Journal of Plant Siences, Vol. 2, No. 1, 2011, pp. 15-26. doi:10.4236/ajps.2011.21002
[11] H. Hayakawa, T. Kobayashi, Y. Minamiya, K. Ito, A. Miyazaki, T. Fukuda and Y. Yamamoto, “Molecular Identification of Turmeric (Curcuma longa, Zingiberceae) with a High Curcumin Content,” Journal of Japanese Botany, Vol. 85, No. 5, 2010, pp. 263-269.
[12] J. A. Coyne and H. A. Orr, “Patterns of Speciation in Drosophila,” Evolution, Vol. 43, No. 2, 1989, pp. 362- 381. doi:10.2307/2409213
[13] J. A. Coyne and H. A. Orr, “Patterns of Speciation in Drosophila Revisited,” Evolution, Vol. 51, No. 1, 1997, pp. 295-333. doi:10.2307/2410984
[14] J. C. Avise, J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb and N. C. Saunders, “Intraspecific Phylogeography: The Mitochondrial DNA Bridge between Population Genetics and Systematics,” Annual Review of Ecolgy, Evolution, and Systematics, Vol. 18, No. 1, 1987, pp. 489-552.
[15] J. C. Avise, “Molecular Markers, Natural History, and Evolution,” Chapman & Hall, New York, 1994.
[16] J. C. Avise, “Phylogeography: The History and Formation of Species,” Harvard University Press, Cambridge, 2000.
[17] J. A. Doyle, “Phylogeny of Vascular Plants,” Annual Review of Ecolgy, Evolution, and Systematics, Vol. 29, No. 1, 1998, pp. 567-599. doi:10.1146/annurev.ecolsys.29.1.567
[18] L. H. Rieseberg, J. Whitton and C. R. Linder, “Molecular Marker Incongruence in Plant Hybrid Zones and Phylogenetic Trees,” Acta Botanica Neerlandica, Vol. 45, 1996, pp. 243-262.
[19] J. F. Wendel and J. J. Doyle, “Phylogenetic Incongruence: Window into Genome History and Molecular Evolution,” In: P. S. Soltis, D. E. Soltis and J. J. Doyle, Eds., Molecular Systematics of Plants II, Kluwer, Dordrecht, 1998, pp. 265-296.
[20] B. G. Baldwin and S. Markos, “Phylogenetic Utility of the External Transcribed Spacer (ETS) of 18S-26S rDNA: Congruence of ETS and ITS Trees of Calycadenia (Compositae),” Molecular Phylogenetics and Evoltion, Vol. 10, No. 3, 1998, pp. 449-463. doi:10.1006/mpev.1998.0545
[21] C. R. Linder, L. R. Goertzen, B. V. Heuvel, J. Francisco-Ortega and R. K. Jansen, “The External Transcribed Spacer Of The Rdna Repeat: A New Nuclear Region for Low-Level Taxonomic Analysis of the Asteraceae and Closely Allied Families,” Molecular Phylogenetics and Evoltion, Vol. 14, 2000, pp. 285-303. doi:10.1006/mpev.1999.0706
[22] S. Markos and B. G. Baldwin, “Higher-Level Relationships and Major Lineages of Lessingia (Compositae, Astereae) Based on Nuclear Rdna Internal and External Transcribed Spacers (ITS and ETS) Sequences,” Systematic Botany, Vol. 26, No. 1, 2001, pp. 168-183.
[23] L. E. Urbatsch, R. P. Roberts and V. Karaman, “Phylogenetic Evaluation of Xylothamia, Gundlachia, and Related Genera (Asteraceae, Astereae) Based on Ets and Its Nrdna Sequence Data,” American Journal of Botany, Vol. 90, No. 4, 2003, pp. 634-649. doi:10.3732/ajb.90.4.634
[24] O. Hidalgo, N. Garcia-Jacas, T. Garnatje and A. Susanna, “Phylogeny of Rhaponticum (Asteraceae, Cardueae- Centaureinae) and Related Genera Inferred from Nuclear and Chloroplast DNA Sequence Data: Taxonomic and Biogeographic Implications,” Annals of Botany, Vol. 97, No. 5, 2006, pp. 704-714. doi:10.1093/aob/mcl029
[25] M. Sato, K. Shimura and K. Hashizume, “Quality Valuation of Turmeric Powders on Market,” Annual Report of Mie Prefecture Health and Enviromant Research Institute, Vol. 6, 2004, pp. 52-54.
[26] L. A. Jonson and D. E. Soltis, “matK DNA Sequences and Phylogenetic Reconstruction in Saxifragaceae s.str.,” Systematic Botany, Vol. 19, No. 1, 1994, pp. 143-156. doi:10.2307/2419718
[27] J. R. Starr, S. A. Harris and D. A. Simpson, “Potential of the 5' and 3' Ends of the Intergenic Spacer (IGS) of Rdna in the Cyperaceae: New Sequences for Lower-Level Phylogenies in Sedges with an Example from Uncinia Pers,” Internat Journal of Plant Sciencese, Vol. 164, 2003, pp. 213-227. doi:10.1086/346168
[28] J. D. Thompson, D. G. Higgins and T. J. Gibson, “CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice,” Nucleic Acids Research, Vol. 22, No. 22, 1994, pp. 4673-4680. doi:10.1093/nar/22.22.4673
[29] K. Tamura, J. Dudley, M. Nei and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software. Version 4.0,” Molecular Biology and Evolution, Vol. 24, No. 8, 2007, pp. 1596-1599. doi:10.1093/molbev/msm092
[30] D. L. Swofford, “paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods),” 4th Edition, Sinauer Associates, Sunderland, 2001.
[31] V. Grant, “Plant Speciation,” Columbia University Press, New York, 1981.
[32] K. Marhold, J. Lihova, M. Perny, R. Grupeand and B. Neuffer, “Natural Hybridization in Cardamine (Brassicaceae) in the Pyrenees: Evidence from Morphological and Molecular Data,” Botanical Journal of Linnean Society, Vol. 139, No. 3, 2002, pp. 275-294. doi:10.1046/j.1095-8339.2002.00066.x
[33] J. Yokoyama, T. Fukuda, A. Yokoyama and M. Maki, “The Intersectional Hybrid between Weigela hortensis and W. maximowiczii (Caprifoliaceae),” Botanical Journal of the Linnean Society, Vol. 138, No. 3, 2002, pp. 369-380. doi:10.1046/j.1095-8339.2002.00033.x
[34] H. Hayakawa, H. Hamachi, Y. Muramatsu, A. Hirata, Y. Minamiya, K. Matsuyama, K. Ito, J. Yokoyama and T. Fukuda, “Interspesific Hybridization between Arisaema sikokianum Franch. Et Savat. and A. tosaense Makino (Araceae) Revealed from Nuclear and Chloroplast DNA Comparisons,” Acta Phytotaxonomica et Geobotanica, Vol. 61, No. 2, 2010, pp. 57-63.
[35] J. C. Avise, “Molecular Markers, Natural History, and Evolution,” 2nd Edition, Sinauer Associates, Sunderland, 2004.
[36] Y. Katsuyama, M. Matsuzawa, N. Funa and S. Horiuchi, “In Vitro Synthesis of Curcumoids by Type III Polyketide Synthase from Oryza sativa,” Journal of Biological Chemistry, Vol. 282, No. 52, 2007, pp. 37702-37709. doi:10.1074/jbc.M707569200
[37] Y. Katsuyama, T. Kita and S. Horiuchi, “Identification and Characterization of Multiple Curcumin Synthases from the Herb Curcuma longa,” FEBS Letter, Vol. 583, No. 17, 2009, pp. 2799-2803. doi:10.1016/j.febslet.2009.07.029
[38] Y. Katsuyama, T. Kita, N. Funa and S. Horiuchi, “Curcumoid Biosynthesis by Two Type III Polyketide Synthases in the Herb Curcuma longa,” Journal of Biological Chemistry, Vol. 284, No. 17, 2009, pp. 11160-11170. doi:10.1074/jbc.M900070200
[39] R. W. Allard, “Principle of Plant Breeding,” Jhon Wiley and Sons, New York, 1960.
[40] M. King, “Species Evolution: The Role of Chromosome Change,” Cambridge University Press, Melbourne, 1993.
[41] R. Dowkins, “Mechanism of Evolution,” In: N. A. Campbell, J. B. Reece and L. G. Mitchell, Eds., Biology, 5th Edition, Addison Wesley Longman, Boston, 1999, pp. 412-487.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.