Distributions of pigments in reef sediments, contribution of phytoplankton to organic matter budget in coral reef
Mohammed Rasheed, Tariq Al-Najjar, Said Damhoureyeh
.
DOI: 10.4236/ns.2011.35046   PDF    HTML     5,628 Downloads   10,296 Views  

Abstract

The temporal distributions of pigment on bio-genic calcareous and terrigenic reef sediments, chlorophyll a, chlorophyll b, chlorophyll c, fuco- xanthin, and porphine concentrations were mea- sured monthly in two sediment columns (0 - 15 cm) for one year. Pigment concentrations in-creased significantly during winter (Novem-ber-April) in both sediment types particularly in the upper layers of the sediments. Phytoplankton contributions to organic matter were found to be 8 ± 3 and 6 ± 2% in calcareous and terrigenous sediments respectively. The accumulation and the successive degradation of phytoplankton detritus to inorganic nutrients in calcareous sand may partly sustain the productivity of the coral reef communities which live in nutrient-poor environments.

Share and Cite:

Rasheed, M. , Al-Najjar, T. and Damhoureyeh, S. (2011) Distributions of pigments in reef sediments, contribution of phytoplankton to organic matter budget in coral reef. Natural Science, 3, 344-350. doi: 10.4236/ns.2011.35046.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Charpy-Roubaud, C.J., Charpy, L. and Cremoux, J.L. (1990) Nutrient budget of the lagoonal waters in an open central South-Pacific atoll (Tikehau, Tuamotu, French Polynesia). Marine Biology, 107, 67-73. doi:10.1007/BF01313243
[2] Rysgaard, S., Thamdrup, B., Risgaard-Petersen, N., Fossing, H., Berg, P., Christensen, P.B. and Dalsgaard, T. (1998) Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, North- east Greenland. Marine Ecology Progress Series, 175, 261-276. doi:10.3354/meps175261
[3] Ciceri, G., Ceradini, S. and Zitelli, A. (1999) Nutrient benthic fluxes and pore water profiles in a shallow brackish marsh of the lagoon of Venice. Annali Di Chimica, 89, 359-375.
[4] Wild, C., Rasheed, M., Werner, U., Franke, U., Johnston, R. and Huettel, M. (2004) Degradation and mineralization of coral mucus in reef environments. Marine Ecology - Progress Series, 267, 159-171. doi:10.3354/meps267159
[5] Rasheed, M., Badran, M.I. and Huettel, M. (2003) Particulate matter filtration and seasonal nutrient dynamics in permeable carbonate and silicate sands of the Gulf of Aqaba, Red Sea. Coral Reefs, 22, 167-177. doi:10.1007/s00338-003-0300-y
[6] Rasheed, M., Wild, C., Jantzen, C. and Badran, M. (2006) Mineralization of particulate organic matter derived from coral-reef organisms in reef sediments of the Gulf of Aqaba. Chemistry & Ecology, 22, 13-20. doi:10.1080/02757540500456823
[7] Wild, C., Naumann, M., Haas, A., Struck, U., Mayer, F., Rasheed, M. and Huettel, M. (2009) Coral sand O2 uptake and pelagic-benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquatic Biology, 6, 133-142. doi:10.3354/ab00181
[8] Jorgensen, B.B. (1983) Processes at the sediment-water interface. In: Bolin, B. and Cook, R.B. Eds., The Major Biochemical Cycles and Their Interactions, John Wiley, New York, 477- 515.
[9] Jorgensen, B.B. (1996) Material flux in the sediment. In: Jorgensen, B.B. and Richardson, K. Eds., Eutrophication in Coastal Marine Ecosystems, American Geophysical Union, Washington, 115-135.
[10] Kristensen, E., Jensen, M.H., Jensen, K.M. (1997) Temporal variations in microbenthic metabolism and inorganic nitrogen fluxes in sandy and muddy sediments of a tidally dominated bay in the northern Wadden Sea. Helgoland Marine Research, 51, 295-320.
[11] Wollast, R. (1991) The coastal organic carbon cycle: Fluxes, sources, and sinks. In: Mantoura, R.F.C., Martin, J.M. and Wollast, R. Eds., Ocean Margin Processes in Global Change, Wiley, Chichester, 365-381
[12] Rasheed, M., Badran, M.I. and Huettel, M. (2003) Influence of sediment permeability and mineral composition on organic matter degradation in three sediments from the Gulf of Aqaba, Red Sea. Estuarine, Coastal and Shelf Science, 57, 369-384. doi:10.1016/S0272-7714(02)00362-1
[13] Friedman, G.M. (1968) Geology and geochemistry of reefs, carbonate sediments, and waters, Gulf of Aqaba (Elat), Red Sea. Journal of Sedimentary Research, 38, 895-919.
[14] Klute, A. and Dirksen, C. (1986) Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute, A. Ed., Methods of Soil Analysis - Part 1 - Physical and Mineralogical Methods, American Society of Agronomy, Madison, 687-734.
[15] Muller, G. (1967) Methods in sedimentary petrology. Hafner Publishing Company, New York, 255.
[16] Sandstrom, M.W., Tirendi, F. and Nott, A. (1986) Direct determination of organic carbon in modern reef sediments and calcareous organisms after dissolution of carbonate. Marine Geology, 70, 321-329. doi:10.1016/0025-3227(86)90009-5
[17] Rusch, A., Forster, S. and Huettel, M. (2001) Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry, 55, 1-27. doi:10.1023/A:1010687322291
[18] Karsten, U. and Garcia-Pichel, F. (1996) Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (cyanobacteria): A chemosystematic study. Systematic and Applied Microbiology, 19, 285-294.
[19] Badran, M.I. and Foster, P. (1998) Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba, Red sea. Aquatic Ecosystem Health & Management, 1, 75-89.
[20] Al-Najjar, T. and Rasheed, M. (2005) Zooplankton biomass in the most northern tip of the Gulf of Aqaba, a case study. Lebanese Science Journal, 6, 3-10.
[21] Rasheed, M., Badran, M.I., Richter, C. and Huettel, M. (2002) Effect of reef framework and bottom sediment on nutrient enrichment in a coral reef of the Gulf of Aqaba, Red Sea. Marine Ecology-Progress Series, 239, 277-285. doi:10.3354/meps239277
[22] Acker, J., et al. (2008) Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. Journal of Marine Systems, 69, 191-204. doi:10.1016/j.jmarsys.2005.12.006
[23] Levanon-Spanier, I., Padan, E. and Reiss, Z. (1979) Primary production in a desert enclosed sea-the Gulf of Elat (Aqaba), Red Sea. Deep Sea Research, 26, 673-685. doi:10.1016/0198-0149(79)90040-2
[24] Badran, M.I. (2001) Dissolved oxygen, chlorophyll a and nutrients: Seasonal cycles in waters of the Gulf Aqaba, Red Sea. Aquatic Ecosystem Health & Management, 4, 139-150. doi:10.1080/14634980127711
[25] Aberle, N., et al. (2009) Differential routing of “new” nitrogen toward higher trophic levels within a marine food web of the Gulf of Aqaba, Northern Red Sea, Marine Biology, 157, 157-169. doi:10.1007/s00227-009-1306-y
[26] Yahel, G., Post, A., Fabricius, K., Vaulot, D. and Genin, A. (1998) Phytoplankton distribution and grazing near coral reef. Limnology and Oceanography, 43, 551-563. doi:10.4319/lo.1998.43.4.0551
[27] Lohse, L., Malschaert, J.F.P., et al. (1995) Sediment-water fluxes of inorganic nitrogen compounds along the transport route of organic matter in the North Sea. Ophelia, 41, 173-197.
[28] Huettel, M. and Gust, G. (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Marine Ecology Progress Series, 89, 253-267. doi:10.3354/meps089253
[29] Boudreau, B.P. (1998) Mean mixed depth of sediments: The wherefore and the why. Limnology and Oceanography, 43, 524-536. doi:10.4319/lo.1998.43.3.0524
[30] Wild, C., Rasheed, M., Werner, U., Franke, U., Johnston, R. and Huettel, M. (2004) Degradation and mineralization of coral mucus in reef environments. Marine Ecology Progress Series, 267, 159-171. doi:10.3354/meps267159
[31] Mayer, L.M. (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chemical Geology, 114, 347-363. doi:10.1016/0009-2541(94)90063-9
[32] Mayer, L.M. (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271-1284. doi:10.1016/0016-7037(94)90381-6
[33] Adams, R.S. and Bustin, R.M. (2001) The effects of surface area, grain size and mineralogy on organic matter sedimentation and preservation across the modern Squamish Delta, British Columbia: The potential role of sediment surface area in the formation of petroleum source rocks. International Journal of Coal Geology, 46, 93-112. doi:10.1016/S0166-5162(01)00019-2
[34] Sorkin, Y.I. (1995) Coral reef ecology. Ecological studies. Springer-Verlag, Berlin.
[35] Pilditch, C.A. and Grant, J. (1999) Effect of variations in flow velocity and phytoplankton concentration on sea scallop Placopecten magellanicus grazing rates. Journal of Experimental Marine Biology and Ecology, 240, 111- 136. doi:10.1016/S0022-0981(99)00052-0
[36] Huettel, M. and Rusch, A. (2000) Transport and degradation of phytoplankton in permeable sediment. Limnology and Oceanography, 45, 534-549. doi:10.4319/lo.2000.45.3.0534
[37] Jahnke, R.A., Nelson, J.R., Marinelli, R.L. and Eckman, J.E. (2000) Benthic flux of biogenic elements on the Southeastern US continental shelf: Influence of pore water advective transport and benthic microalgae. Continental Shelf Research, 20, 109-127. doi:10.1016/S0278-4343(99)00063-1
[38] Rusch, A. and Huettel, M. (2000) Advective particle transport into permeable sediments - evidence from experiments in an intertidal sandflat. Limnology and Oceanography, 45, 525-533. doi:10.4319/lo.2000.45.3.0525
[39] Buddemeier, R.W. and Oberdorfer, J.A. (1986) Internal hydrology and geochemistry of coral reefs and atoll islands: Key to diagenetic variations. In: Schroeder, J.H. and Purser, B.H. Eds., Reef Diagenesis, Springer, Berlin, 91-112.
[40] Riegl, B. (1995) Effects of sand deposition on scleractinian and alcyonacean corals. Marine Biology, 121, 517-526. doi:10.1007/BF00349461
[41] Huettel, M., Ziebis, W. and Forster, S. (1996) Flow-in- duced uptake of particulate matter in permeable sediments. Limnol Oceanogr, 41, 309-322. doi:10.4319/lo.1996.41.2.0309
[42] Huettel, M., Ziebis, W., Forster, S. and Luther, G.L. (1998) Advective transport affecting metal and nutrient distribution and interfacial fluxes in permeable sediments, Geochimica et Cosmochimica Acta, 62, 613-631. doi:10.1016/S0016-7037(97)00371-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.