Methyl Cholate and Resorcinarene New Carriers for the Recovery of Cr(III) Ions by Supported Liquid Membranes (SLM)s

Abstract

The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic phase and film of polyvinylidene difluoride, as hydrophobic polymer support with 100 μm in thickness and 0.45 μm as the diameter of the pores. The macroscopic parameters (P and J0) on the transport of these ions were determined for different medium temperatures. For these different environments, the prepared SLMs were highly permeable and a clear evolution of these parameters was observed. The parameter J0 depended on the temperature according to the Arrhenius equation. The activation parameters, Ea, ΔH and ΔS, for the transition state on the reaction of complex formation (ST) , were determined. To explain these results for this phenomenon, and achieve a better extraction of the substrate, a model based on the substrate complexation by the carrier and the diffusion of the formed complex (ST) was developed. The experimental results verify this model and determine the microscopic parameters (Kass and D*). These studies show that these parameters Kass and D* are specific to facilitated transport of Cr(III) ions by each of the carriers and they are changing significantly with temperature.

Share and Cite:

A. Benjjar, T. Eljaddi, O. Kamal, L. Lebrun and M. Hlaibi, "Methyl Cholate and Resorcinarene New Carriers for the Recovery of Cr(III) Ions by Supported Liquid Membranes (SLM)s," Open Journal of Physical Chemistry, Vol. 3 No. 3, 2013, pp. 103-114. doi: 10.4236/ojpc.2013.33013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Chaudry, N. Bukhari, M. Mazhar and W. Abbasi, “Coupled Transport of Chromium(III) Ions across Triethanolamine/Cyclohexanone Based Supported Liquid Membranes for Tannery Waste Treatment,” Separation and Purification Technology, Vol. 55, No. 3, 2007, pp. 292-299. doi:10.1016/j.seppur.2006.12.008
[2] S. Biswas, P. N. Pathak and S. B. Roy, “Carrier Facilitated Transport of Uranium across Supported Liquid Membrane Using Dinonyl Phenyl Phosphoric Acid and Its Mixture with Neutral Donors,” Desalination, Vol. 290, 2012, pp. 74-82. doi:10.1016/j.desal.2012.01.006
[3] S. ur Rehman, G. Akhtar, M. A. Chaudry, K. Ali and N. Ullah, “Transport of Ag+ through Tri-n Dodecylamine Supported Liquid Membranes,” Journal of Membrane Science, Vol. 389, 2012, pp. 287-293. doi:10.1016/j.memsci.2011.10.040
[4] M. Hor, A. Riad, A. Benjjar, L. Lebrun and M. Hlaibi, “Technique of Supported Liquid Membranes (SLMs) for the Facilitated Transport of Vanadium Ions (VO2+): Parameters and Mechanism on the Transport Process,” Desalination, Vol. 255, No. 1-3, 2010, pp. 188-195. doi:10.1016/j.desal.2009.12.023
[5] H. Hassoune, T. Rhlalou, M. A. Frouji, C. Chappey and J.-F. Verchère, “Application of Supported Liquid Membranes Containing Methyl Cholate in Cyclohexane for the Carrier-Mediated Transport of Sugars,” Desalination, No. 1-3, Vol. 189, 2006, pp. 31-42. doi:10.1016/j.desal.2005.06.010
[6] K. Touaj, N. Tbeur, M. Hor, J. F. Verchère and M. Hlaibi., “A Supported Liquid Membrane (SLM) with Resorcinarene for Facilitated Transport of Methyl Glycopyranosides: Parameters and Mechanism Relating to the Transport,” Journal of Membrane Science, Vol. 337, No. 1-2, 2009, pp. 28-38. doi:10.1016/j.memsci.2009.03.014
[7] R. K. Biswas and M. A. Hayat, “Solvent Extraction of Zirconium (IV) from Chloride Medium by D2EHPA in Kerosene,” Hydrometallurgy, Vol. 63, No. 2, 2002, pp. 149-158. doi:10.1016/S0304-386X(01)00220-1
[8] R. K. Biswas and M. A. Hayat, “Kinetics of Solvent Extraction of Zirconium (IV) from Chloride Medium by D2EHPA in Kerosene Using the Single Drop Technique,” Hydrometallurgy, Vol. 65, No. 2-3, 2002, pp. 205-216. doi:10.1016/S0304-386X(02)00089-0
[9] J.-H. Chen, Y.-Y. Kao and C.-H. Lin, “Selective Separation of Vanadium from Molybdenum, Using D2EHPAImmobilized Amberlite XAD-4 Resin,” Separation Science and Technology, Vol. 38, No. 15, 2003, pp. 3827-3852. doi:10.1081/SS-120024234
[10] G. Jia, G Torri and M. Ptruzzi, “Distribution Coefficients of POLONIUM between 5% Topo in Toluene and Aqueous Hydrochloric and Nitric Acids,” Applied Radiation and Isotopes, Vol. 61, No. 2-3, 2004, pp. 279-282. doi:10.1016/j.apradiso.2004.03.021
[11] W. F. van Straate-Nijenhuis, F. deJong and D. N. Reinhoudt, “Macrocyclic Carriers in Supported Liquid Membranes,” Recueil des Travaux Chimiques des Pays-Bas, Vol. 112, No. 6, 1993, pp. 317-324. doi:10.1002/recl.19931120602
[12] L. Boyadzhiez and G. Kyuchouv, “Short Communication: Further Development of Carrier-Mediated Extraction,” Journal of Membrane Science, Vol. 6, 1980, pp. 107-202.
[13] H. C. Visser, D. N. Reinhoudt and F. de Jong, “CarrierMediated Transport through Liquid Membranes,” Chemical Society Reviews, Vol. 23, No. 2, 1994, pp. 75-81. doi:10.1039/cs9942300075
[14] L. Zhao, D. Fei, Y. Dang, X. Zhou and J. Xiao, “Studies on the Extraction of Chromium(III) by Emulsion Liquid Membrane,” Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. 130-135. doi:10.1016/j.jhazmat.2010.01.052
[15] R. M. Izatt, J. D. Lamb and R. L. Brueing, “Comparison of Bulk, Emulsion, Thin Sheet Supported, and Hollo fiber SLM, in Macrocycle-Mediated Cation Separations,” Separation Science and Technology, Vol. 23, No. 12-13, 1988, pp. 1645-1685. doi:10.1080/01496398808075654
[16] Y. M. Scindia, A. K. Pandey and A. V. R. Reddy, “Coupled-Diffusion Transport of Cr(VI) across Anion-Exchange Membranes Prepared by Physical and Chemical Immobilization Methods,” Journal of Membrane Science, Vol. 249, No. 1-2, 2005, pp. 143-152. doi:10.1016/j.memsci.2004.10.015
[17] M. Mulder, “Basic Principles in Membrane Technology,” Kluwer Academic Publishers, Dordrecht, 1991. doi:10.1007/978-94-017-0835-7
[18] J. A. Jonsson and L. Mathiasson,” Liquid Membrane Extraction in Analytical Sample Preparation,” Trends in Analytical Chemistry, Vol. 18, No. 5, 1999, pp. 318-325. doi:10.1016/S0165-9936(99)00102-8
[19] H. Singh, S. L. Mishra and R. Vijayalakshmi, “Uranium Recovery from Phosphoric Acid by Solvent Extraction Using a Synergistic Mixture of Di-Nonyl Phenyl Phosphoric Acid and Tri-n-Butyl Phosphate,” Hydrometallurgy, Vol. 73, No. 1-2, 2004, pp. 63-70. doi:10.1016/j.hydromet.2003.08.006
[20] T. Yamaguchi, K. Nishimura, T. Shinbo and M. Sugiura, “Amino Acid Transport through Supported Liquid Membrane: Mechanism and Its Application to Enantiomeric Resolution,” Bioelectrochemistry and Bioenergetics, Vol. 20, No. 1-3, 1988, pp. 109-123. doi:10.1016/S0302-4598(98)80009-3
[21] P. Dzygiel, P. Wieczorek, J. A. Jonsson and L. Mathiasson, “Enrichment of Amino Acids by Supported Liquid Membrane Extraction Using Aliquat 336 as a Carrier,” Analytical Letters, Vol. 31, No. 7, 1998, pp. 1261-1274. doi:10.1080/00032719808002861
[22] M. Rak, P. Dzygiel and P. Wieczorek, “Supported Liquid Membrane Extraction of Aromatic Aminophosphonates,” Analytica Chimica Acta, Vol. 433, No. 2, 2001, pp. 227-236. doi:10.1016/S0003-2670(01)00785-1
[23] M. Di Luccio, B. D. Smith, T. Kida, T. L. M. Alves and C. P. Borges, “Evaluation of flat Sheet and Hollow Fiber Supported Liquid Membranes for Fructose Pertraction from a Mixtures of Sugars,” Desalination, Vol. 148, No. 1-3, 2002, pp. 213-220. doi:10.1016/S0011-9164(02)00700-2
[24] N. Tbeur, T. Rhlalou, M. Hlaibi, D. Langevin, M. Métayer and J. F. Verchère, “Selective Transport of Alditols through a Supported Liquid Membrane,” Carbohydrate Research, Vol. 329, No. 2, 2000, pp. 409-422. doi:10.1016/S0008-6215(00)00188-9
[25] M. Hlaibi, N. Tbeura, A. Benjjar, O. Kamal and L. Lebrun, “Carbohydrate-Resorcinarene Complexes Involved in the Facilitated Transport of Alditols Across a Supported Liquid Membrane,” Journal of Membrane Science, Vol. 377, No. 1-2, 2011, pp. 231-240. doi:10.1016/j.memsci.2011.04.055
[26] P. Dzygiel and P. Wieczorek, “Extraction of glyphosate by a Supported Liquid Membrane Technique,” Journal of Chromatography A, Vol. 889, No. 1-2, 2000, pp. 93-98. doi:10.1016/S0021-9673(00)00120-5
[27] M. Mulugeta and N. Megersa, “Carrier-Mediated Extraction of Bipyridilium Herbicides across the Hydrophobic Liquid Membrane,” Talanta, Vol. 64, No. 1, 2004, pp. 101-108. doi:10.1016/j.talanta.2003.11.049
[28] S. Glasstone, K. J. Laidler and H. Eyring, “The Theory of Rate Processes,” McGraw-Hill, New York, 1941.
[29] C. Fontàs, R. Tayeb, M. Dhahbi, E. Gaudichet, F. Thominette, P. Roy, K. Steenkeste, M.-P. Fontaine-Aupart, S. Tingry, E. Tronel-Peyroz and P. Seta, “Polymer Inclusion Membranes: The Concept of Fixed Sites Membrane Revised,” Journal of Membrane Science, Vol. 290, No. 1-2, 2007, pp. 62-72. doi:10.1016/j.memsci.2006.12.019
[30] J. Konczyk, C. Kozlowski and W. Walkowiak, “Removal of Chromium(III) from Acidic Aqueous Solution By Polymer Inclusion Membranes with D2EHPA and Aliquat 336,” Desalination, Vol. 263, No. 1-3, 2010, pp. 212-216. doi:10.1016/j.desal.2010.06.061
[31] A. Lewis and J. Azoro, “The Nature of the Intermediate Formed in the Methoxymercuration of p-Substituted Styrenes,” Tetrahedron Letters, Vol. 20, No. 38, 1979, pp. 3627-3630. doi:10.1016/S0040-4039(01)95481-4
[32] M. F. Ruasse, A. Argile and J. E. Dubois, “The Multipathway Mechanism in Styrene bromination: Competition between Bromonium and Carbonium Ion intermediates,” Journal of the American Chemical Society, Vol. 100, No. 24, 1978, pp. 7645-7652. doi:10.1021/ja00492a035
[33] R. S. Juang and L. J. Chen, “Transport of Citric Acid across a SLM Containing Various Salts of a Tertiary Amine,” Journal of Membrane Science, Vol. 123, No. 1, 1997, pp. 81-87. doi:10.1016/S0376-7388(96)00205-0
[34] E. Miyako, T. Maruyama, N. Kamiya and M. Goto, “Transport of Organic Acids through a Supported Liquid Membrane Driven by Lipase-Catalyzed Reactions,” Journal of Bioscience and Bioengineering, Vol. 96, No. 4, 2003, pp. 370-374.
[35] S. P. Kusumocahyo, T. Kanamori, K. Sumaru, S. Aomatsu, H. Matsuyama, M. Teramoto and T. Shinbo, “Development of Polymer Inclusion Membranes Based on Cellulose Triacetate: Carrier-Mediated Transport of Cerium(III),” Journal of Membrane Science, Vol. 244, No. 1-2, 2004, pp. 251-257. doi:10.1016/j.memsci.2004.07.013
[36] A. Yilmaz, A. Kaya, H. Korkmaz Alpoguz, M. Ersoz and M. Yilmaz, “Kinetic Analysis of Chromium(VI) Ions Transport through a Bulk Liquid Membrane Containing p-Tert-Butylcalix[4]Arene Dioxaoctylamide Derivative,” Separation and Purification Technology, Vol. 59, No. 1, 2008, pp. 1-8. doi:10.1016/j.seppur.2007.05.017
[37] C. A. Kozlowski, “Kinetics of Chromium(VI) Transport from Mineral Acids across Cellulose Triacetate (CTA) Plasticized Membranes Immobilized by Tri-n-Octylamine,” Industrial & Engineering Chemistry Research, Vol. 46, No. 16, 2007, pp. 5420-5428. doi:10.1021/ie070215i
[38] R. S. Juang, R. H. Huang and R. T. Wu, “Separation of Citric and Lactic Acids in Aqueous Solutions by Solvent Extraction and Liquid Membrane Processes,” Journal of Membrane Science, Vol. 136, No. 1-2, 1997, pp. 89-99. doi:10.1016/S0376-7388(97)00176-2
[39] F. J. Alguacil and H. Tayibi, “Carrier-Facilitated Transport of Cd(II) from a High-Salinity Chloride Medium across a Supported Liquid Membrane Containing Cyanex 923 in Solvesso 100,” Hydrometallurgy, Vol. 180, No. 1-3, 2005, pp. 181-187.
[40] G. O. Yahaya, B. J. Brisdon and R. England, “Facilitated Transport of Lactic Acid and Its Ethyl Ester by SLMs Containing Functionalized Polyorganosiloxanes as Carriers,” Journal of Membrane Science, Vol. 168, No. 1-2, 2000, pp. 187-201. doi:10.1016/S0376-7388(99)00312-9
[41] H. Hassoune, T. Rhlalou, M. Métayer and J. F. Verchère, “Facilitated Transport of Aldoses by Methyl Cholate through SLMs Impregnated with Various Solvents,” Journal of Membrane Science, Vol. 248, No. 1-2, 2005, pp. 89-98. doi:10.1016/j.memsci.2004.08.024

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.