Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography for Osteochondromas Utilizing a Triple-Time Point Protocol

Abstract

Purpose: The purpose of this study was to assess solitary osteochondroma and hereditary multiple osteochondral exostoses (HMOCE) utilizing FDG PET and a triple time point protocol. Methods: Seven patients were consented and recruited for PET evaluation of presumed benign osteochondroma. Following injection of 15 mCi of FDG, the lesion(s) of interest was imaged with PET-CT at 45 minutes post injection, whole body at 50 minutes post, and lesion of interest at 95 minutes post injection. A maximum standardized uptake value (SUVmax) was obtained for the lesion(s) of interest at each time point, and an SUVΔ was calculated for each lesion of interest from the first time point to the third time point. Results: 16 lesions from 7 patients were included in the study. Mean SUVmax for all 3 time points was 1.04 with a standard deviation of 0.50 (range 0.3 - 2.2). The mean SUV was 0.096 with a range of 0 - 0.4. Among the 3 patients with histologically confirmed osteochondromas, mean SUVmax was 0.67, with standard deviation of 0.23 and range of 0.3 to 1.0. The mean SUVΔ13 was 0.081 (range 0 - 0.4), mean SUVΔ12 was 0.10 (0 - 0.3), and mean SUVΔ23 was 0.11 (range 0 - 0.4) (p = 0.74). Conclusion: Benign lesions were found to not have progressively increasing uptake on multiple time point FDG PET. Until chondrosarcomas are evaluated using triple time point 18FDG PET, its applicability in the evaluation of osteochondroma versus malignant change remains uncertain.

Share and Cite:

C. Sambaziotis, A. Lovy, R. Moadel, M. Chamarthy, J. Glaser, S. Jaini, E. Villanueva-Siles and D. Geller, "Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography for Osteochondromas Utilizing a Triple-Time Point Protocol," Open Journal of Medical Imaging, Vol. 1 No. 2, 2011, pp. 15-20. doi: 10.4236/ojmi.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Biermann, “Common Benign Lesions of Bone in Children and Adolescents,” Journal of Pediatric Orthopaedics, Vol. 22, No. 2, 2002, pp. 268-273. doi:10.1097/01241398-200203000-00028
[2] R. C. Garrison, K. K. Unni, R. A. McLeod, D. J. Pritchard and D. C. Dahlin, “Chondrosarcoma Arising in Osteochondroma,” Cancer, Vol. 49, No. 9, 1982, pp. 1890- 1897. doi:10.1002/1097-0142(19820501)49:9<1890::AID-CNCR2820490923>3.0.CO;2-U
[3] E. L. Staals, P. Bacchini, M. Mercuri and F. Bertoni, “Dedifferentiated Chondrosarcomas Arising in Preexisting Osteochondromas,” Journal of Bone and Joint Surgery, Vol. 89, No. 5, 2007, pp. 987-993. doi:10.2106/JBJS.F.00288
[4] S. Pannier and L. Legeai-Mallet, “Hereditary Multiple Exostoses and Enchondromatosis,” Best Practice & Research Clinical Rheumatology, Vol. 22, No. 1, 2008, pp. 45-54. doi:10.1016/j.berh.2007.12.004
[5] F. Feldman, R. Vanheertum and C. Saxena, “18Fluorodeoxyglucose Positron Emission Tomography Evaluation of Benign versus Malignant Osteochondromas: Preliminary Observations,” Journal of Computer Assisted Tomography, Vol. 30, No. 5, 2006, pp. 858-864. doi:10.1097/01.rct.0000228160.86096.ca
[6] A. Kivioja, H. Ervasti, J. Kinnunen, I. Kaitila, M. Wolf and T. Bohling, “Chondrosarcoma in a Family with Multiple Hereditary Exostoses,” Journal of Bone and Joint Surgery, Vol. 82, No. 2, 2000, pp. 261-266. doi:10.1302/0301-620X.82B2 .10139
[7] D. A. Podoloff, D. W. Ball, E. Ben-Josef, et al., “NCCN Task Force: Clinical Utility of PET in a Variety of Tumor Types,” Journal of the National Comprehensive Cancer Network, Vol. 7, Suppl. 2, 2009, pp. S1-S26.
[8] J. Aoki, H. Watanabe, T. Shinozaki, M. Tokunaga, T. Inoue and K. Endo, “FDG-PET in Differential Diagnosis and Grading of Chondrosarcomas,” Journal of Computer Assisted Tomography, Vol. 23, No. 4, 1999, pp. 603-608. doi:10.1097/00004728-199907000-00022
[9] E. U. Conrad, H. D. Morgan, C. Vernon, S. M. Schuetze and J. F. Eary, “Fluorodeoxyglucose Positron Emission Tomography Scanning: Basic Principles and Imaging of Adult Soft-Tissue Sarcomas,” Journal of Bone and Joint Surgery, Vol. 86-A, No. 2, 2004, pp. 98-104.
[10] F. Y. Lee, J. Yu, S. S. Chang, R. Fawwaz and M. V. Parisien, “Diagnostic Value and Limitations of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography for Cartilaginous Tumors of Bone,” Journal of Bone and Joint Surgery, Vol. 86-A, No. 12, 2004, pp. 2677-2685.
[11] F. Feldman, R. van Heertum and C. Manos, “18FDG PET Scanning of Benign and Malignant Musculoskeletal Lesions,” Skeletal Radiology, Vol. 32, No. 4, 2003, pp. 201-208. doi:10.1007/s00256-003-0623-3
[12] F. Feldman, R. Van Heertum, C. Saxena and M. Parisien, “18FDG-PET Applications for Cartilage Neoplasms,” Skeletal Radiology, Vol. 34, No. 7, 2005, pp. 367-374. doi:10.1007/s00256-005-0894-y
[13] D. Uesaka, Y. Demura, T. Ishizaki, S. Ameshima, I. Miyamori, M. Sasaki, Y. Fujibayashi and H. Okazawa, “Evaluation of Dual-Time-Point 18F-FDG PET for Staging in Patients with Lung Cancer,” Journal of Nuclear Medicine, Vol. 49, No. 10, 2008, pp. 1606-1612. doi:10.2967/jnumed.108.051250
[14] A. Matthies, M. Hickeson, A. Cuchiara and A. Alavi, “Dual Time Point 18F-FDG PET for the Evaluation of Pulmonary Nodules,” Journal of Nuclear Medicine, Vol. 43, No. 7, 2002, pp. 871-875.
[15] M. D. Murphey, J. J. Choi, M. J. Kransdorf, D. J. Flemming and F. H.Gannon, “Imaging of Osteochondroma: Variants and Complications with Radiologic-Pathologic Correlation,” Radiographics, Vol. 20, No. 5, 2000, pp. 1407-1434.
[16] J. Malghem, B. V. Berg, H. Noel and B. Maldague, “Benign Osteochondromas and Exostotic Chondrosarcomas: Evaluation of Cartilage Cap Thickness by Ultrasound,” Skeletal Radiology, Vol. 21, No. 1, 1992, pp. 33-37. doi:10.1007/BF00243091
[17] T. M. Hudson, D. S. Springfield, S. S. Spanier, W. F. Enneking and D. J. Hamlin, “Benign Exostoses and Exostotic Chondrosarcomas: Evaluation of Cartilage Thickness by CT,” Radiology, Vol. 152, No. 3, 1984, pp. 595-599.
[18] M. J. Geirnaerdt, P. C. Hogendoorn, J. L. Bloem, A. H. Taminiau and H. J. van der Woude, “Cartilaginous Tumors: Fast Contrast-Enhanced MR Imaging,” Radiology, Vol. 214, No. 2, 2000, pp. 539-546.
[19] S. A. Bernard, M. D. Murphey, D. J. Flemming and M. J. Kransdorf, “Improved Differentiation of Benign Osteochondromas from Secondary Chondrosarcomas with Standardized Measurement of Cartilage Cap at CT and MR Imaging,” Radiology, Vol. 255, No. 3, 2010, pp. 857-865. doi:10.1148/radiol.10082120

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.