Real Time Monitoring of Fluorescent Particles in Micro-Channels by High Resolution Dual Modality Probe Imaging

Abstract

Imaging of micro particles in micro-fluidic channels is one of the recent thrust areas in research as it provides more flexibility in setup and analysis compared to conventional microscopy. However, a probe based imaging scheme, with achievable high resolutions incorporating multimodal analysis is one of the challenges researchers have been facing. In this context, this paper illustrates a simple dual modality high resolution flexible probe imaging system for imaging applications in micro/optofluidic channels. The proposed system exhibits axial and lateral resolution of about 16 μm and 3.12 μm respectively. This proposed system also exhibits a modulation transfer function (MTF) of about 38.42 %. The performance of the system is validated by imaging micro particles in a microchannel and obtaining the fluorescent emission spectrum simultaneously.

Share and Cite:

K. Sathiyamoorthy, V. Mohankumar and V. Murukeshan, "Real Time Monitoring of Fluorescent Particles in Micro-Channels by High Resolution Dual Modality Probe Imaging," Optics and Photonics Journal, Vol. 1 No. 4, 2011, pp. 197-203. doi: 10.4236/opj.2011.14031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Ashkin, “Optical Trapping and Manipulation of Neutral Particles Using Lasers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 10, 1997, pp. 4853-4860. doi:10.1073/pnas.94.10.4853
[2] P. Domachuk, M. Cronin-Golomb, B. Eggleton, S. Mut- zenich, G. Rosengarten and A. Mitchell, “Application of optical trapping to beam manipulation in optofluidics,” Optics Express, Vol. 13, No. 19, 2005, pp. 7265-7275. doi:10.1364/OPEX.13.007265
[3] D. Hoffmann, J. O'Brien, D. Brennan and M. Loughran, “Optically Encoded Silicon Microbeads: Detection and Characterisation in a Microfluidic System,” Sensors and Actuators B: Chemical, Vol. 122, No. 2, 2007, pp. 653- 658.
[4] H. Kinoshita, M. Oshima, S. Kaneda and T. Fujii, “Validation of Confocal Micro-PIV Technique by Poiseuille Flow Measurement,” International Conference on Micro- technologies in Medicine and Biology, 9-12 May 2006, pp. 78-80.
[5] S. Kuhn, B. S. Phillips, E. J. Lunt, A. R. Hawkins and H. Schmidt, “Ultralow Power Trapping and Fluorescence Detection of Single Particles on an Optofluidic Chip,” Lab on a Chip, Vol. 10, No. 2, 2010, pp. 189-194. doi:10.1039/b915750f
[6] S.-K. Lee, S.-H. Kim, J.-H. Kang, S.-G. Park, W.-J. Jung, S.-H. Kim, G.-R. Yi and S.-M. Yang, “Optofluidics Technology Based on Colloids and Their Assemblies,” Microfluidics and Nanofluidics, Vol. 4, No. 1, 2008, pp. 129-144. doi:10.1007/s10404-007-0218-8
[7] R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K.-I. Tsubota, Y. Imai and T. Yamaguchi, “In Vitro Blood Flow in a Rectangular PDMS Microchannel: Experimental Observations Using a Confocal Micro-PIV system,” Biomedical Microdevices, Vol. 10, No. 2, 2008, pp. 153-167. doi:10.1007/s10544-007-9121-z
[8] C. Monat, P. Domachuk and B. J. Eggleton, “Integrated Optofluidics: A New River of Light,” Nature Photonics, Vol. 1, No. 2, 2007, pp. 106-114. doi:10.1038/nphoton.2006.96
[9] J.-C. Roulet, R. V?lkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij and R. D?ndliker, “Performance of an Integrated Microoptical System for Fluorescence Detection in Microfluidic Systems,” Analytical Chemistry, Vol. 74, No. 14, 2002, pp. 3400-3407. doi:10.1021/ac0112465
[10] K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen and R. Richards-Kortum, “In Vivo Fiber-Optic Confocal Reflectance Microscope with an Injection-Molded Plastic Miniature Objective Lens,” Applied Optics, Vol. 44, No. 10, 2005, pp. 1792-1797. doi:10.1364/AO.44.001792
[11] T. Dabbs and M. Glass, “Fiber-Optic Confocal Micro- scope: FOCON,” Applied Optics, Vol. 31, No. 16, 1992, pp. 3030-3035. doi:10.1364/AO.31.003030
[12] J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt and T. Possner, “Endoscope-Compatible Confocal Microscope Using a Gradient Index-Lens System,” Optics Communications, Vol. 188, No. 5-6, 2001, pp. 267-273. doi:10.1016/S0030-4018(00)01164-0
[13] A. Osdoit, M. Genet, A. Perchant, S. Loiseau, B. Abrat and F. Lacombe, “In Vivo Fibered Confocal Reflectance Imaging: Totally Non-Invasive Morphological Cellular Imaging Brought to the Endoscopist,” In: G. J. Tearney and T. D. Wang, Eds., SPIE, San Jose, 2006, pp. 608208- 608210. doi:10.1117/12.646659
[14] K.B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica and R. Richards-Kortum, “Near Real Time in Vivo Fibre Optic Confocal Microscopy: Sub-Cellular Structure Resolved,” Journal of Microscopy, Vol. 207, No. 2, 2002, pp. 137-145. doi:10.1046/j.1365-2818.2002.01049.x
[15] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung and M. J. Schnitzer, “Fiber-Optic Fluorescence Imaging,” Nature Methods, Vol. 2, No. 12, 2005, pp. 941-950. doi:10.1038/nmeth820
[16] V. M. Murukeshan and N. Sujatha, “All Fiber Based Multispeckle Modality Endoscopic System for Imaging Medical Cavities,” Review of Scientific Instruments, Vol. 78, No. 5, 2007, pp. 53106-53108. doi:10.1063/1.2737772
[17] “Bibliography on Confocal Microscopy and Its Applications,” Journal of Scanning Microscopies: Scanning, Vol. 16, No. 1, 1994, pp. 33-56.
[18] T. Wilson, R. Juskaitis, N. P. Rea and D. K. Hamilton, “Fibre Optic Interference and Confocal Microscopy,” Op- tics Communications, Vol. 110, No. 1-2, 1994, pp. 1-6. doi:10.1016/0030-4018(94)90161-9
[19] M. Gu and D. Bird, “Fibre-Optic Double-Pass Confocal Microscopy,” Optics & Laser Technology, Vol. 30, No. 2, 1998, pp. 91-93. doi:10.1016/S0030-3992(98)00014-0
[20] V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh and L. K. Seah, “Effect of Image Fiber on the Speckle Fringe Pattern in Image Fiber-Guided DSPI Endoscopy,” Optics & Laser Technology, Vol. 39, No. 3, 2007, pp. 527-531. doi:10.1016/j.optlastec.2005.11.001
[21] N. Sujatha, V.M. Murukeshan, L. S. Ong and L. K. Seah, “An All Fiber Optic System Modeling for the Gastrointestinal Endoscopy: Design Concepts and Fluorescent Analysis,” Optics Communications, Vol. 219, No. 1-6, 2003, pp. 71-79.
[22] K. Sathiyamoorthy, V. K. Mohankumar and M. V. Matham, “Variable Focal Lengths Image Fiber Based Microscope System for Ciomedical Application,” Photo- nics Global Conference, Singapore, 14-16 Decenmber 2010, pp. 1-3.
[23] Y. Li, T. Wang, H. Kosaka, S. Kawai and K. Kasahara, “Fiber-Image-Guide-Based Bit-Parallel Optical Interconnects,” Applied Optics, Vol. 35, No. 35, 1996, pp. 6920-6933. doi:10.1364/AO.35.006920
[24] T. Wilson, R. Ju?kaitis, N. P. Rea and D. K. Hamilton, “Fibre Optic Interference and Confocal Microscopy,” Optics Communications, Vol. 110, No. 1-2, 1994, pp. 1-6. doi:10.1016/0030-4018(94)90161-9
[25] J. B. Pawley and B. R. Masters, “Handbook of Biological Confocal Microscopy,” 3rd Edition, Journal of Biomedical Optics, Vol. 13, No. 2, 2008, pp. 29902-29903. doi:10.1117/1.2911629
[26] K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard and R. Richards-Kortum, “Single Fiber Confocal Microscope with a Two-Axis Gimbaled MEMS Scanner for Cellular Imaging,” Optics Express, Vol. 14, No. 19, 2006, pp. 8604-8612. doi:10.1364/OE.14.008604

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.