Share This Article:

HIV-1 Assembly, Release and Maturation

Abstract Full-Text HTML Download Download as PDF (Size:2075KB) PP. 111-130
DOI: 10.4236/wja.2011.14017    5,577 Downloads   10,806 Views   Citations

ABSTRACT

Late steps of HIV-1 life cycle are determinant for optimal dissemination of the virus to new target cells. These steps include assembly of structural precursors, budding of the new particle and maturation into fully infectious virions. Each step is finely tuned and timely regulated to allow the appropriate assembly of structural components, the efficient recruitment of viral and cell partners and the timely regulated proteolytic processing of the protein precursors. Despite the huge number of studies devoted to the definition of molecular mechanisms regulating these steps, a number of question remains to be answered before they are clearly apprehended. The elucidation of the role played by each viral proteins, nucleic acids as well as host-encoded factors will provide new clues in the understanding of the retroviral assembly/maturation process and will allow further development of new antiviral compounds. This review reports the most recent progress as well as the questions that remain to be answered in the field of HIV-1 assembly, release and maturation. Finally, we also describe the data available on the design and use of new antiretroviral drugs targeting these specific steps of the retroviral replication.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Briant, B. Gay, C. Devaux and N. Chazal, "HIV-1 Assembly, Release and Maturation," World Journal of AIDS, Vol. 1 No. 4, 2011, pp. 111-130. doi: 10.4236/wja.2011.14017.

References

[1] C. Giroud, N. Chazal and L. Briant, “Cellular Kinases Incorporated into HIV-1 Particles: Passive or Active Passengers?” Retrovirology, Vol. 8, 2011, p. 71.
[2] C. S. Adamson and E. O. Freed, “Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation,” Advances in Pharmacology, Vol. 55, 2007, pp. 347-387. doi:10.1016/S1054-3589(07)55010-6
[3] J. A. Briggs, M. N. Simon, I. Gross, H. G. Krausslich, S. D. Fuller, V. M. Vogt and M. C. Johnson, “The Stoi- chiometry of Gag Protein in HIV-1,” Nature Structural & Molecular Biology, Vol. 11, No. 7, 2004, pp. 672-675. doi:10.1038/nsmb785
[4] S. D. Fuller, T. Wilk, B. E. Gowen, H. G. Krausslich and V. M. Vogt, “Cryo-Electron Microscopy Reveals Ordered Domains in the Immature HIV-1 Particle,” Current Biology, Vol. 7, No. 10, 1997, pp. 729-738. doi:10.1016/S0960-9822(06)00331-9
[5] T. Wilk, I. Gross, B. E. Gowen, T. Rutten, F. de Haas, R. Welker, H. G. Krausslich, P. Boulanger and S. D. Fuller, “Organization of Immature Human Immunodeficiency Virus Type 1,” Journal of Virology, Vol. 75, No. 2, 2001, pp. 759-771. doi:10.1128/JVI.75.2.759-771.2001
[6] J. A. Briggs, K. Grunewald, B. Glass, F. Forster, H. G. Krausslich and S. D. Fuller, “The Mechanism of HIV-1 Core Assembly: Insights from Three-Dimensional Reconstructions of Authentic Virions,” Structure, Vol. 14, No. 1, 2006, pp. 15-20. doi:10.1016/j.str.2005.09.010
[7] S. B. Kutluay and P. D. Bieniasz, “Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging,” PLoS Pathogens, Vol. 6, No. 11, 2010, e1001200. doi:10.1371/journal.ppat.1001200
[8] A. Ono, “Relationships between Plasma Membrane Microdomains and HIV-1 Assembly,” Biology of the Cell, Vol. 102, No. 6, 2010, pp. 335-350. doi:10.1042/BC20090165
[9] A. Alfadhli, D. Huseby, E. Kapit, D. Colman and E. Barklis, “Human Immunodeficiency Virus Type 1 Matrix Protein Assembles on Membranes as a Hexamer,” Journal of Virology, Vol. 81, No. 3, 2007, pp. 1472-1478. doi:10.1128/JVI.02122-06
[10] A. Alfadhli, R. L. Barklis and E. Barklis, “HIV-1 Matrix Organizes as a Hexamer of Trimers on Membranes Containing Phosphatidylinositol-(4,5)-bisphosphate,” Virology, Vol. 387, No. 2, 2009, pp. 466-472. doi:10.1016/j.virol.2009.02.048
[11] N. Chazal, B. Gay, C. Carriere, J. Tournier and P. Boulanger, “Human Immunodeficiency Virus Type 1 MA Deletion Mutants Expressed in Baculovirus-Infected Cells: Cis and Trans Effects on the Gag Precursor Assembly Pa- thway,” Journal of Virology, Vol. 69, 1995, pp. 365-375.
[12] M. A. Checkley, B. G. Luttge and E. O. Freed, “HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and In- corporation,” Journal of Molecular Biology, Vol. 410, No. 4, 2011, pp. 582-608. doi:10.1016/j.jmb.2011.04.042
[13] K. Lu, X. Heng and M. F. Summers, “Structural Determinants and Mechanism of HIV-1 Genome Packaging,” Journal of Molecular Biology, Vol. 410, No. 4, 2011, pp. 609-633. doi:10.1016/j.jmb.2011.04.029
[14] D. E. Ott, L. V. Coren and T. D. Gagliardi, “Redundant Roles for Nucleocapsid and Matrix RNA-Binding Sequences in Human Immunodeficiency Virus Type 1 Assembly,” Journal of Virology, Vol. 79, No. 22, 2005, pp. 13839-13847. doi:10.1128/JVI.79.22.13839-13847.2005
[15] C. P. Jones, S. A. Datta, A. Rein, I. Rouzina and K. Musier-Forsyth, “Matrix Domain Modulates HIV-1 Gag’s Nucleic Acid Chaperone Activity via Inositol Phosphate Binding,” Journal of Virology, Vol. 85, No. 4, 2011, pp. 1594-1603. doi:10.1128/JVI.01809-10
[16] S. A. Datta, F. Heinrich, S. Raghunandan, S. Krueger, J. E. Curtis, A. Rein and H. Nanda, “HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid,” Journal of Molecular Biology, Vol. 406, No. 2, 2011, pp. 205-214. doi:10.1016/j.jmb.2010.11.051
[17] J. A. Briggs, M. C. Johnson, M. N. Simon, S. D. Fuller and V. M. Vogt, “Cryo-Electron Microscopy Reveals Con- served and Divergent Features of Gag Packing in Immature Particles of Rous Sarcoma Virus and Human Immunodeficiency Virus,” Journal of Molecular Biology, Vol. 355, No. 1, 2006, pp. 157-168. doi:10.1016/j.jmb.2005.10.025
[18] T. R. Gamble, S. Yoo, F. F. Vajdos, U. K. von Schwedler, D. K. Worthylake, H. Wang, J. P. McCutcheon, W. I. Sundquist and C. P. Hill, “Structure of the Carboxyl- Terminal Dimerization Domain of the HIV-1 Capsid Protein,” Science, Vol. 278, No. 5339, 1997, pp. 849-853. doi:10.1126/science.278.5339.849
[19] B. K. Ganser-Pornillos, A. Cheng and M. Yeager, “Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice,” Cell, Vol. 131, No. 1, 2007, pp. 70-79. doi:10.1016/j.cell.2007.08.018
[20] S. Li, C. P. Hill, W. I. Sundquist and J. T. Finch, “Image Reconstructions of Helical Assemblies of the HIV-1 CA Protein,” Nature, Vol. 407, No. 6802, 2000, pp. 409-413. doi:10.1038/35030177
[21] J. A. Briggs, T. Wilk, R. Welker, H. G. Krausslich and S. D. Fuller, “Structural Organization of Authentic, Mature HIV-1 Virions and Cores,” The EMBO Journal, Vol. 22, No. 7, 2003, pp. 1707-1715. doi:10.1093/emboj/cdg143
[22] B. K. Ganser-Pornillos, M. Yeager and W. I. Sundquist, “The Structural Biology of HIV Assembly,” Current Opinion in Structural Biology, Vol. 18, No. 2, 2008, pp. 203-217. doi:10.1016/j.sbi.2008.02.001
[23] D. Ivanov, O. V. Tsodikov, J. Kasanov, T. Ellenberger, G. Wagner and T. Collins, “Domain-Swapped Dimerization of the HIV-1 Capsid C-Terminal Domain,” Proceedings of the National Academy of Sciences USA, Vol. 104, No. 11, 2007, pp. 4353-4358. doi:10.1073/pnas.0609477104
[24] E. K. Franke, H. E. Yuan and J. Luban, “Specific Incorporation of Cyclophilin A into HIV-1 Virions,” Nature, Vol. 372, No. 6504, 1994, pp. 359-362. doi:10.1038/372359a0
[25] M. Thali, A. Bukovsky, E. Kondo, B. Rosenwirth, C. T. Walsh, J. Sodroski and H. G. G?ttlinger, “Functional Association of Cyclophilin A with HIV-1 Virions,” Nature, Vol. 372, No. 6504, 1994, pp. 363-365. doi:10.1038/372363a0
[26] D. Braaten, E. K. Franke and J. Luban, “Cyclophilin A Is Required for the Replication of Group M Human Immunodeficiency Virus Type 1 (HIV-1) and Simian Immunodeficiency Virus SIV(CPZ)GAB But Not Group O HIV-1 or Other Primate Immunodeficiency Viruses,” Journal of Virology, Vol. 70, 1996, pp. 4220-4227.
[27] T. Hatziioannou, D. Perez-Caballero, S. Cowan and P. D. Bieniasz, “Cyclophilin Interactions with Incoming Human Immunodeficiency Virus Type 1 Capsids with Opposing Effects on Infectivity in Human Cells,” Journal of Virology, Vol. 79, No. 1, 2005, pp. 176-183. doi:10.1128/JVI.79.1.176-183.2005
[28] D. M. Sayah, E. Sokolskaja, L. Berthoux and J. Luban, “Cyclophilin A Retrotransposition into TRIM5 Explains Owl Monkey Resistance to HIV-1,” Nature, Vol. 430, No. 6999, 2004, pp. 569-573. doi:10.1038/nature02777
[29] R. C. Craven, A. E. Leure-duPree, C. R. Erdie, C. B. Wilson and J. W. Wills, “Necessity of the Spacer Peptide between CA and NC in the Rous Sarcoma Virus Gag Protein,” Journal of Virology, Vol. 67, 1993, pp. 6246-6252.
[30] M. A. Accola, S. Hoglund and H. G. Gottlinger, “A Putative Alpha-Helical Structure Which Overlaps the Capsid-p2 Boundary in the Human Immunodeficiency Virus Type 1 Gag Precursor Is Crucial for Viral Particle Assembly,” Journal of Virology, Vol. 72, 1998, pp. 2072- 2078.
[31] S. A. Datta, L. G. Temeselew, R. M. Crist, F. Soheilian, A. Kamata, J. Mirro, D. Harvin, K. Nagashima, R. E. Cachau and A. Rein, “On the Role of the Sp1 Domain in Hiv-1 Particle Assembly: A Molecular Switch?” Journal of Virology, Vol. 85, No. 9, 2011, pp. 4111-4121. doi:10.1128/JVI.00006-11
[32] E. R. Wright, J. B. Schooler, H. J. Ding, C. Kieffer, C. Fillmore, W. I. Sundquist and G. J. Jensen, “Electron Cryotomography of Immature HIV-1 Virions Reveals the Structure of the CA and SP1 Gag Shells,” The EMBO Journal, Vol. 26, 2007, pp. 2218-2226. doi:10.1038/sj.emboj.7601664
[33] C. Liang, J. Hu, R. S. Russell, A. Roldan, L. Kleiman and M. A. Wainberg, “Characterization of a Putative Alpha- Helix across the Capsid-SP1 Boundary That Is Critical for the Multimerization of Human Immunodeficiency Virus Type 1 Gag,” Journal of Virology, Vol. 76, No. 22, 2002, pp. 11729-11737. doi:10.1128/JVI.76.22.11729-11737.2002
[34] B. Gay, J. Tournier, N. Chazal, C. Carriere and P. Boulanger, “Morphopoietic Determinants of HIV-1 Gag Particles Assembled in Baculovirus-Infected Cells,” Virology, Vol. 247, No. 2, 1998, pp. 160-169. doi:10.1006/viro.1998.9237
[35] X. F. Yu, Z. Matsuda, Q. C. Yu, T. H. Lee and M. Essex, “Role of the C Terminus Gag Protein in Human Immunodeficiency Virus Type 1 Virion Assembly and Maturation,” Journal of General Virology, Vol. 76, No. 12, 1995, pp. 3171-3179. doi:10.1099/0022-1317-76-12-3171
[36] L. V. Coren, J. A. Thomas, E. Chertova, R. C. Sowder, T. D. Gagliardi, R. J. Gorelick and D. E. Ott, “Mutational Analysis of the C-Terminal Gag Cleavage Sites in Human Immunodeficiency Virus Type 1,” Journal of Virology, Vol. 81, No. 18, 2007, pp. 10047-10054. doi:10.1128/JVI.02496-06
[37] D. Lener, V. Tanchou, B. P. Roques, S. F. Le Grice and J. L. Darlix, “Involvement of HIV-I Nucleocapsid Protein in the Recruitment of Reverse Transcriptase into Nucleoprotein Complexes Formed in Vitro,” Journal of Biological Chemistry, Vol. 273, No. 50, 1998, pp. 33781-33786. doi:10.1074/jbc.273.50.33781
[38] M. Ohishi, T. Nakano, S. Sakuragi, T. Shioda, K. Sano and J. Sakuragi, “The Relationship between HIV-1 Genome RNA Dimerization, Virion Maturation and Infectivity,” Nucleic Acids Research, Vol. 39, No. 8, 2010, pp. 3404-3417. doi:10.1093/nar/gkq1314
[39] A. Rein, L. E. Henderson and J. G. Levin, “Nucleic-Acid- Chaperone Activity of Retroviral Nucleocapsid Proteins: Significance for Viral Replication,” Trends in Biochemical Sciences, Vol. 23, No. 8, 1998, pp. 297-301. doi:10.1016/S0968-0004(98)01256-0
[40] R. J. Gorelick, D. J. Chabot, A. Rein, L. E. Henderson and L. O. Arthur, “The Two Zinc Fingers in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Are Not Functionally Equivalent,” Journal of Virology, Vol. 67, 1993, pp. 4027-4036.
[41] Y. Zhang, H. Qian, Z. Love and E. Barklis, “Analysis of the Assembly Function of the Human Immunodeficiency Virus Type 1 Gag Protein Nucleocapsid Domain,” Journal of Virology, Vol. 72, 1998, pp. 1782-1789.
[42] S. Sandefur, R. M. Smith, V. Varthakavi and P. Spearman, “Mapping and Characterization of the N-Terminal I Domain of Human Immunodeficiency Virus Type 1 Pr55 (Gag),” Journal of Virology, Vol. 74, No. 16, 2000, pp. 7238-7249. doi:10.1128/JVI.74.16.7238-7249.2000
[43] A. J. Mouland, J. Mercier, M. Luo, L. Bernier, L. DesGroseillers and E. A. Cohen, “The Double-Stranded RNA-Binding Protein Staufen Is Incorporated in Human Immunodeficiency Virus Type 1: Evidence for a Role in Genomic RNA Encapsidation,” Journal of Virology, Vol. 74, No. 12, 2000, pp. 5441-5451. doi:10.1128/JVI.74.12.5441-5451.2000
[44] E. Bacharach, J. Gonsky, K. Alin, M. Orlova and S. P. Goff, “The Carboxy-Terminal Fragment of Nucleolin Interacts with the Nucleocapsid Domain of Retroviral Gag Proteins and Inhibits Virion Assembly,” Journal of Virology, Vol. 74, No. 23, 2000, pp. 11027-11039. doi:10.1128/JVI.74.23.11027-11039.2000
[45] J. R. Lingappa, J. E. Dooher, M. A. Newman, P. K. Kiser and K. C. Klein, “Basic Residues in the Nucleocapsid Domain of Gag Are Required for Interaction of HIV-1 Gag with ABCE1 (HP68), a Cellular Protein Important for HIV-1 Capsid Assembly,” Journal of Biological Ch- emistry, Vol. 281, 2006, pp. 3773-3784. doi:10.1074/jbc.M507255200
[46] S. Popov, E. Popova, M. Inoue and H. G. Gottlinger, “Divergent Bro1 Domains Share the Capacity to Bind Human Immunodeficiency Virus Type 1 Nucleocapsid and to Enhance Virus-Like Particle Production,” Journal of Virology, Vol. 83, No. 14, 2009, pp. 7185-7193. doi:10.1128/JVI.00198-09
[47] J. Votteler, L. Neumann, S. Hahn, F. Hahn, P. Rauch, K. Schmidt, N. Studtrucker, S. M. Solbak, T. Fossen, P. Henklein, D. E. Ott, G. Holland, N. Bannert and U. Schubert, “Highly Conserved Serine Residue 40 in HIV-1 p6 Regulates Capsid Processing and Virus Core Assembly,” Retrovirology, Vol. 8, 2011, p. 11. doi:10.1186/1742-4690-8-11
[48] E. R. Weiss and H. Gottlinger, “The Role of Cellular Factors in Promoting HIV Budding,” Journal of Molecular Biology, Vol. 410, No. 4, 2011, pp. 525-533. doi:10.1016/j.jmb.2011.04.055
[49] B. Strack, A. Calistri, S. Craig, E. Popova and H. G. Gottlinger, “AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding,” Cell, Vol. 114, No. 6, 2003, pp. 689-699. doi:10.1016/S0092-8674(03)00653-6
[50] C. Lazert, N. Chazal, L. Briant, D. Gerlie and J. C. Cortay, “Refined Study of the Interaction between HIV-1 p6 Late Domain and ALIX,” Retrovirology, Vol. 5, 2008, p. 39. doi:10.1186/1742-4690-5-39
[51] U. Schubert, D. E. Ott, E. N. Chertova, R. Welker, U. Tessmer, M. F. Princiotta, J. R. Bennink, H. G. Krausslich and J. W. Yewdell, “Proteasome Inhibition Interferes with Gag Polyprotein Processing, Release, and Maturation of HIV-1 and HIV-2,” Proceedings of the National Academy of Sciences USA, Vol. 97, No. 24, 2000, pp. 13057-13062. doi:10.1073/pnas.97.24.13057
[52] D. E. Ott, L. V. Coren, E. N. Chertova, T. D. Gagliardi, U. Schubert, “Ubiquitination of HIV-1 and MuLV Gag,” Virology, Vol. 278, No. 1, 2000, pp. 111-121. doi:10.1006/viro.2000.0648
[53] S. J. Neil, T. Zang and P. D. Bieniasz, “Tetherin Inhibits Retrovirus Release and Is Antagonized by HIV-1 Vpu,” Nature, Vol. 451, 2008, pp. 425-430. doi:10.1038/nature06553
[54] N. Van Damme, D. Goff, C. Katsura, R. L. Jorgenson, R. Mitchell, M. C. Johnson, E. B. Stephens and J. Guatelli, “The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein,” Cell Host Microbe, Vol. 3, No. 4, 2008, pp. 245-252. doi:10.1016/j.chom.2008.03.001
[55] M. Dube, B. B. Roy, P. Guiot-Guillain, J. Mercier, J. Binette, G. Leung and E. A. Cohen, “Suppression of Tetherin-Restricting Activity upon Human Immunodeficiency Virus Type 1 Particle Release Correlates with Localization of Vpu in the Trans-Golgi Network,” Journal of Virology, Vol. 83, No. 9, 2009, pp. 4574-4590. doi:10.1128/JVI.01800-08
[56] J. C. Guatelli, “Interactions of Viral Protein U (Vpu) with Cellular Factors,” Current Topics in Microbiology and Immunology, Vol. 339, 2009, pp. 27-45. doi:10.1007/978-3-642-02175-6_2
[57] N. Jouvenet, S. J. Neil, C. Bess, M. C. Johnson, C. A. Virgen, S. M. Simon and P. D. Bieniasz, “Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly,” PLoS Biology, Vol. 4, No. 12, 2006, p. e435.
[58] V. Blot, F. Perugi, B. Gay, M. C. Prevost, L. Briant, F. Tangy, H. Abriel, O. Staub, M. C. Dokhelar and C. Pique, “Nedd4.1-Mediated Ubiquitination and Subsequent Recruitment of Tsg101 Ensure HTLV-1 Gag Trafficking towards the Multivesicular Body Pathway Prior to Virus Budding,” Journal of Cell Science, Vol. 117, 2004, pp. 2357-2367. doi:10.1242/jcs.01095
[59] N. Chazal and D. Gerlier, “Virus Entry, Assembly, Budding, and Membrane Rafts,” Microbiology and Molecular Biology Reviews, Vol. 67, No. 2, 2003, pp. 226-237. doi:10.1128/MMBR.67.2.226-237.2003
[60] B. Brugger, B. Glass, P. Haberkant, I. Leibrecht, F. T. Wieland and H. G. Krausslich, “The HIV Lipidome: A Raft with an Unusual Composition,” Proceedings of the National Academy of Sciences USA, Vol. 103, No. 8, 2006, pp. 2641-2646. doi:10.1073/pnas.0511136103
[61] E. Chertova, O. Chertov, L. V. Coren, J. D. Roser, C. M. Trubey, J. W. Bess Jr., R. C. Sowder, 2nd, E. Barsov, B. L. Hood, R. J. Fisher, K. Nagashima, T. P. Conrads, T. D. Veenstra, J. D. Lifson and D. E. Ott, “Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages,” Journal of Virology, Vol. 80, No. 18, 2006, pp. 9039-9052. doi:10.1128/JVI.01013-06
[62] M. Bryant and L. Ratner, “Myristoylation-Dependent Replication and Assembly of Human Immunodeficiency Virus 1,” Proceedings of the National Academy of Sciences USA, Vol. 87, No. 2, 1990, pp. 523-527. doi:10.1073/pnas.87.2.523
[63] W. Zhou, L. J. Parent, J. W. Wills and M. D. Resh, “Identification of a Membrane-Binding Domain within the Amino-Terminal Region of Human Immunodeficiency Virus Type 1 Gag Protein Which Interacts with Acidic Phospholipids,” Journal of Virology, Vol. 68, 1994, pp. 2556-2569.
[64] E. O. Freed, “HIV-1 Gag: Flipped Out for PI(4,5)P(2),” Proceedings of the National Academy of Sciences USA, Vol. 103, No. 30, 2006, pp. 11101-11102. doi:10.1073/pnas.0604715103
[65] J. S. Saad, J. Miller, J. Tai, A. Kim, R. H. Ghanam and M. F. Summers, “Structural Basis for Targeting HIV-1 Gag Proteins to the Plasma Membrane for Virus Assembly,” Proceedings of the National Academy of Sciences USA, Vol. 103, No. 30, 2006, pp. 11364-11369. doi:10.1073/pnas.0602818103
[66] L. Hermida-Matsumoto and M. D. Resh, “Human Immunodeficiency Virus Type 1 Protease Triggers a Myristoyl Switch That Modulates Membrane Binding of Pr55 (Gag) and p17MA,” Journal of Virology, Vol. 73, 1999, pp. 1902-1908.
[67] M. H. Naghavi and S. P. Goff, “Retroviral Proteins That Interact with the Host Cell Cytoskeleton,” Current Opinion in Immunology, Vol. 19, No. 4, 2007, pp. 402-407. doi:10.1016/j.coi.2007.07.003
[68] Y. Tomita, T. Noda, K. Fujii, T. Watanabe, Y. Morikawa and Y. Kawaoka, “The Cellular Factors Vps18 and Mon2 Are Required for Efficient Production of Infectious HIV-1 Particles,” Journal of Virology, Vol. 85, No. 11, 2011, pp. 5618-5627. doi:10.1128/JVI.00846-10
[69] X. Dong, H. Li, A. Derdowski, L. Ding, A. Burnett, X. Chen, T. R. Peters, T. S. Dermody, E. Woodruff, J. J. Wang and P. Spearman, “AP-3 Directs the Intracellular Trafficking of HIV-1 Gag and Plays a Key Role in Particle Assembly,” Cell, Vol. 120, No. 5, 2005, pp. 663-674. doi:10.1016/j.cell.2004.12.023
[70] G. Camus, C. Segura-Morales, D. Molle, S. Lopez- Verges, C. Begon-Pescia, C. Cazevieille, P. Schu, E. Bertrand, C. Berlioz-Torrent and E. Basyuk, “The Clathrin Adaptor Complex AP-1 Binds HIV-1 and MLV Gag and Facilitates Their Budding,” Molecular Biology of the Cell, Vol. 18, No. 8, 2007, pp. 3193-3203. doi:10.1091/mbc.E06-12-1147
[71] L. J. Parent, “New Insights into the Nuclear Localization of Retroviral Gag Proteins,” Nucleus, Vol. 2, No. 2, 2011, pp. 92-97. doi:10.4161/nucl.2.2.15018
[72] S. Dupont, N. Sharova, C. DeHoratius, C. M. Virbasius, X. Zhu, A. G. Bukrinskaya, M. Stevenson and M. R. Green, “A Novel Nuclear Export Activity in HIV-1 Matrix Protein Required for Viral Replication,” Nature, Vol. 402, 1999, pp. 681-685. doi:10.1038/45272
[73] N. Jouvenet, P. D. Bieniasz and S. M. Simon, “Imaging the Biogenesis of Individual HIV-1 Virions in Live Cells,” Nature, Vol. 454, 2008, pp. 236-240. doi:10.1038/nature06998
[74] S. C. Pettit, N. Sheng, R. Tritch, S. Erickson-Viitanen and R. Swanstrom, “The Regulation of sequential Processing of HIV-1 Gag by the Viral Protease,” Advances in Experimental Medicine and Biology, Vol. 436, 1998, pp. 15-25. doi:10.1007/978-1-4615-5373-1_2
[75] O. Pornillos, B. K. Ganser-Pornillos, B. N. Kelly, Y. Hua, F. G. Whitby, C. D. Stout, W. I. Sundquist, C. P. Hill and M. Yeager, “X-Ray Structures of the Hexameric Building Block of the HIV Capsid,” Cell, Vol. 137, No. 7, 2009, pp. 1282-1292. doi:10.1016/j.cell.2009.04.063
[76] J. R. Cortines, E. B. Monroe, S. Kang and P. E. Prevelige Jr., “A Retroviral Chimeric Capsid Protein Reveals the Role of the N-Terminal beta-Hairpin in Mature Core Assembly,” Journal of Molecular Biology, Vol. 410, No. 4, 2011, pp. 641-652. doi:10.1016/j.jmb.2011.03.052
[77] J. C. Paillart, M. Shehu-Xhilaga, R. Marquet and J. Mak, “Dimerization of Retroviral RNA Genomes: An Inseparable Pair,” Nature Reviews Microbiology, Vol. 2, 2004, pp. 461-472. doi:10.1038/nrmicro903
[78] T. Murakami, S. Ablan, E. O. Freed and Y. Tanaka, “Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity,” Journal of Virology, Vol. 78, No. 2, 2004, pp. 1026-1031. doi:10.1128/JVI.78.2.1026-1031.2004
[79] D. J. Wyma, J. Jiang, J. Shi, J. Zhou, J. E. Lineberger, M. D. Miller and C. Aiken, “Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: A Novel Role of the gp41 Cytoplasmic Tail,” Journal of Virology, Vol. 78, No. 7, 2004, pp. 3429-3435. doi:10.1128/JVI.78.7.3429-3435.2004
[80] J. Sticht, M. Humbert, S. Findlow, J. Bodem, B. Muller, U. Dietrich, J. Werner and H. G. Krausslich, “A Peptide Inhibitor of HIV-1 Assembly in Vitro,” Nature Structural & Molecular Biology, Vol. 12, 2005, pp. 671-677. doi:10.1038/nsmb964
[81] F. Ternois, J. Sticht, S. Duquerroy, H. G. Krausslich and F. A. Rey, “The HIV-1 Capsid Protein C-Terminal Domain in Complex with a Virus Assembly Inhibitor,” Nature Structural & Molecular Biology, Vol. 12, 2005, pp. 678-682. doi:10.1038/nsmb967
[82] H. Zhang, Q. Zhao, S. Bhattacharya, A. A. Waheed, X. Tong, A. Hong, S. Heck, F. Curreli, M. Goger, D. Cowburn, E. O. Freed and A. K. Debnath, “A Cell-Penetrating Helical Peptide as a Potential HIV-1 Inhibitor,” Journal of Molecular Biology, Vol. 378, No. 3, 2008, pp. 565-580. doi:10.1016/j.jmb.2008.02.066
[83] C. S. Adamson and E. O. Freed, “Novel Approaches to Inhibiting HIV-1 Replication,” Antiviral Research, Vol. 85, No. 1, 2010, pp. 119-141. doi:10.1016/j.antiviral.2009.09.009
[84] F. Curreli, H. Zhang, X. Zhang, I. Pyatkin, Z. Victor, A. Altieri and A. K. Debnath, “Virtual Screening Based Identification of Novel Small-Molecule Inhibitors Targeted to the HIV-1 Capsid,” Bioorganic & Medicinal Chemistry, Vol. 19, No. 1, 2011, pp. 77-90. doi:10.1016/j.bmc.2010.11.045
[85] C. Tang, E. Loeliger, I. Kinde, S. Kyere, K. Mayo, E. Barklis, Y. Sun, M. Huang and M. F. Summers, “Antiviral Inhibition of the HIV-1 Capsid Protein,” Journal of Molecular Biology, Vol. 327, No. 5, 2003, pp. 1013-1020. doi:10.1016/S0022-2836(03)00289-4
[86] B. N. Kelly, S. Kyere, I. Kinde, C. Tang, B. R. Howard, H. Robinson, W. I. Sundquist, M. F. Summers and C. P. Hill, “Structure of the Antiviral Assembly Inhibitor CAP-1 Complex with the HIV-1 CA Protein,” Journal of Molecular Biology, Vol. 373, No. 2, 2007, pp. 355-366. doi:10.1016/j.jmb.2007.07.070
[87] J. Shi, J. Zhou, V. B. Shah, C. Aiken and K. Whitby, “Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization,” Journal of Virology, Vol. 85, 2011, pp. 542-549.
[88] E. O. Freed, “HIV-1 and the Host Cell: An Intimate Association,” Trends in Microbiology, Vol. 12, No. 4, 2004, pp. 170-177. doi:10.1016/j.tim.2004.02.001
[89] U. M. Munshi, J. Kim, K. Nagashima, J. H. Hurley and E. O. Freed, “An Alix Fragment Potently Inhibits HIV-1 Budding: Characterization of Binding to Retroviral YPXL Late Domains,” Journal of Biological Chemistry, Vol. 282, 2007, pp. 3847-3855. doi:10.1074/jbc.M607489200
[90] O. Pornillos, S. L. Alam, D. R. Davis and W. I. Sundquist, “Structure of the Tsg101 UEV Domain in Complex with the PTAP Motif of the HIV-1 p6 Protein,” Nature Structural Biology, Vol. 9, 2002, pp. 812-817.
[91] F. Liu, A. G. Stephen, A. A. Waheed, M. J. Aman, E. O. Freed, R. J. Fisher and T. R. Burke Jr., “SAR by Oxime- Containing Peptide Libraries: Application to Tsg101 Ligand Optimization,” ChemBioChem, Vol. 9, No. 12, 2008, pp. 2000-2004. doi:10.1002/cbic.200800281
[92] A. Tavassoli, Q. Lu, J. Gam, H. Pan, S. J. Benkovic and S. N. Cohen, “Inhibition of HIV Budding by a Genetically Selected Cyclic Peptide Targeting the Gag-TSG101 Interaction,” ACS Chemical Biology, Vol. 3, No. 12, 2008, pp. 757-764. doi:10.1021/cb800193n
[93] T. Fujioka, Y. Kashiwada, R. E. Kilkuskie, L. M. Cosentino, L. M. Ballas, J. B. Jiang, W. P. Janzen, I. S. Chen and K. H. Lee, “Anti-AIDS Agents, 11. Betulinic Acid and Platanic Acid as Anti-HIV Principles from Syzigium Claviflorum, and the Anti-HIV Activity of Structurally Related Triterpenoids,” Journal of Natural Products, Vol. 57, No. 2, 1994, pp. 243-247. doi:10.1021/np50104a008
[94] Y. Kashiwada, F. Hashimoto, L. M. Cosentino, C. H. Chen, P. E. Garrett and K. H. Lee, “Betulinic Acid and Dihydrobetulinic Acid Derivatives as Potent Anti-HIV Agents,” Journal of Medicinal Chemistry, Vol. 39, No. 5, 1996, pp. 1016-1017. doi:10.1021/jm950922q
[95] F. Li, R. Goila-Gaur, K. Salzwedel, N. R. Kilgore, M. Reddick, C. Matallana, A. Castillo, D. Zoumplis, D. E. Martin, J. M. Orenstein, G. P. Allaway, E. O. Freed and C. T. Wild, “PA-457: A Potent HIV Inhibitor That Disrupts Core Condensation by Targeting a Late Step in Gag Processing,” Proceedings of the National Academy of Sciences USA, Vol. 100, No. 23, 2003, pp. 13555-13560. doi:10.1073/pnas.2234683100
[96] I. C. Sun, C. H. Chen, Y. Kashiwada, J. H. Wu, H. K. Wang and K. H. Lee, “Anti-AIDS Agents 49. Synthesis, Anti-HIV, and Anti-Fusion Activities of IC9564 Analogues Based on Betulinic Acid,” Journal of Medicinal Chemistry, Vol. 45, No. 19, 2002, pp. 4271-4275. doi:10.1021/jm020069c
[97] L. Quere, T. Wenger and H. J. Schramm, “Triterpenes as Potential Dimerization Inhibitors of HIV-1 Protease,” Biochemical and Biophysical Research Communications, Vol. 227, No. 2, 1996, pp. 484-488. doi:10.1006/bbrc.1996.1533
[98] J. F. Mayaux, A. Bousseau, R. Pauwels, T. Huet, Y. Henin, N. Dereu, M. Evers, F. Soler, C. Poujade, E. De Clercq, et al., “Triterpene Derivatives That Block Entry of Human Immunodeficiency Virus Type 1 into Cells,” Proceedings of the National Academy of Sciences USA, Vol. 91, No. 9, 1994, pp. 3564-3568. doi:10.1073/pnas.91.9.3564
[99] B. Labrosse, O. Pleskoff, N. Sol, C. Jones, Y. Henin and M. Alizon, “Resistance to a Drug Blocking Human Immunodeficiency Virus Type 1 Entry (RPR103611) Is Conferred by Mutations in gp41,” Journal of Virology, Vol. 71, 1997, pp. 8230-8236.
[100] X. Yuan, L. Huang, P. Ho, C. Labranche and C. H. Chen, “Conformation of gp120 Determines the Sensitivity of HIV-1 DH012 to the Entry Inhibitor IC9564,” Virology, Vol. 324, No. 2, 2004, pp. 525-530. doi:10.1016/j.virol.2004.04.009
[101] S. Bar and M. Alizon, “Role of the Ectodomain of the gp41 Transmembrane Envelope Protein of Human Immunodeficiency Virus Type 1 in Late Steps of the Membrane Fusion Process,” Journal of Virology, Vol. 78, No. 2, 2004, pp. 811-820. doi:10.1128/JVI.78.2.811-820.2004
[102] J. Zhou, X. Yuan, D. Dismuke, B. M. Forshey, C. Lundquist, K. H. Lee, C. Aiken and C. H. Chen, “Small- Molecule Inhibition of Human Immunodeficiency Virus Type 1 Replication by Specific Targeting of the Final Step of Virion Maturation,” Journal of Virology, Vol. 78, 2004, pp. 922-929. doi:10.1128/JVI.78.2.922-929.2004
[103] P. W. Keller, C. S. Adamson, J. B. Heymann, E. O. Freed and A. C. Steven, “HIV-1 Maturation Inhibitor Bevirimat Stabilizes the Immature Gag Lattice,” Journal of Virology, Vol. 85, 2011, pp. 1420-1428. doi:10.1128/JVI.01926-10
[104] B. Muller, M. Anders, H. Akiyama, S. Welsch, B. Glass, K. Nikovics, F. Clavel, H. M. Tervo, O. T. Keppler and H. G. Krausslich, “HIV-1 Gag Processing Intermediates Trans-Dominantly Interfere with HIV-1 Infectivity,” Journal of Biological Chemistry, Vol. 284, 2009, pp. 29692- 29703. doi:10.1074/jbc.M109.027144
[105] J. Zhou, C. H. Chen and C. Aiken, “The Sequence of the CA-SP1 Junction Accounts for the Differential Sensitivity of HIV-1 and SIV to the Small Molecule Maturation Inhibitor 3-O-{3’,3’-Dimethylsuccinyl}-betulinic Acid,” Retrovirology, Vol. 1, 2004, p. 15. doi:10.1186/1742-4690-1-15
[106] S. DaFonseca, A. Blommaert, P. Coric, S. S. Hong, S. Bouaziz and P. Boulanger, “The 3-O-(3’,3’-Dimethyl- succinyl) Derivative of Betulinic Acid (DSB) Inhibits the Assembly of Virus-Like Particles in HIV-1 Gag Precursor-Expressing Cells,” Antiviral Therapy, Vol. 12, 2007, pp. 1185-1203.
[107] J. Zhou, L. Huang, D. L. Hachey, C. H. Chen and C. Aiken, “Inhibition of HIV-1 Maturation Via Drug Association with the Viral Gag Protein in Immature HIV-1 Particles,” Journal of Biological Chemistry, Vol. 280, 2005, pp. 42149-42155. doi:10.1074/jbc.M508951200
[108] D. E. Martin, R. Blum, J. Wilton, J. Doto, H. Galbraith, G. L. Burgess, P. C. Smith and C. Ballow, “Safety and Pharmacokinetics of Bevirimat (PA-457), a Novel Inhibitor of Human Immunodeficiency Virus Maturation, in Healthy Volunteers,” Antimicrobial Agents and Chemotherapy, Vol. 51, No. 9, 2007, pp. 3063-3066. doi:10.1128/AAC.01391-06
[109] C. S. Adamson, S. D. Ablan, I. Boeras, R. Goila-Gaur, F. Soheilian, K. Nagashima, F. Li, K. Salzwedel, M. Sakalian, C. T. Wild and E. O. Freed, “In Vitro Resistance to the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PA-457 (Bevirimat),” Journal of Virology, Vol. 80, No. 22, 2006, pp. 10957-10971. doi:10.1128/JVI.01369-06
[110] K. Van Baelen, K. Salzwedel, E. Rondelez, V. Van Eygen, S. De Vos, A. Verheyen, K. Steegen, Y. Verlinden, G. P. Allaway and L. J. Stuyver, “Susceptibility of Human Immunodeficiency Virus Type 1 to the Maturation Inhibitor Bevirimat Is Modulated by Baseline Polymorphisms in Gag Spacer Peptide 1,” Antimicrobial Agents and Chemotherapy, Vol. 53, 2009, pp. 2185-2188. doi:10.1128/AAC.01650-08
[111] P. F. Smith, A. Ogundele, A. Forrest, J. Wilton, K. Salzwedel, J. Doto, G. P. Allaway and D. E. Martin, “Phase I and II Study of the Safety, Virologic Effect, and Pharmacokinetics/Pharmacodynamics of Single-Dose 3- O-(3’,3’-Dimethylsuccinyl)betulinic acid (Bevirimat) ag- ainst Human Immunodeficiency Virus Infection,” Antimicrobial Agents and Chemotherapy, Vol. 51, No. 10, 2007, pp. 3574-3581. doi:10.1128/AAC.00152-07
[112] N. A. Margot, C. S. Gibbs and M. D. Miller, “Phenotypic Susceptibility to Bevirimat in Isolates from HIV-1-Infected Patients without Prior Exposure to Bevirimat,” Antimicrobial Agents and Chemotherapy, Vol. 54, No. 6, 2010, pp. 2345-2353. doi:10.1128/AAC.01784-09
[113] R. M. McAllister, J. Lalezari, G. Richmond, M. Thompson, R. Harrigan, D. Martin, K. Salzwedel and D. Allaway, “HIV-1 Gag Polymorphisms Determine Treatment Response to Bevirimat (PA-457),” Antiviral Therapy, Vol. 13, 2008, p. A10.
[114] W. Lu, K. Salzwedel, D. Wang, S. Chakravarty, E. O. Freed, C. T. Wild and F. Li, “A Single Polymorphism in HIV-1 Subtype C SP1 Is Sufficient to Confer Natural Resistance to the Maturation Inhibitor, Bevirimat,” Antimicrobial Agents and Chemotherapy, Vol. 55, No. 7, 2011, pp. 3324-3329.
[115] J. Cao, J. Isaacson, A. K. Patick and W. S. Blair, “High- Throughput Human Immunodeficiency Virus Type 1 (HIV-1) Full Replication Assay That Includes HIV-1 Vif as an Antiviral Target,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 9, 2005, pp. 3833-3841. doi:10.1128/AAC.49.9.3833-3841.2005
[116] W. S. Blair, J. Cao, J. Fok-Seang, P. Griffin, J. Isaacson, R. L. Jackson, E. Murray, A. K. Patick, Q. Peng, M. Perros, C. Pickford, H. Wu and S. L. Butler, “New Small- Molecule Inhibitor Class Targeting Human Immunodeficiency Virus Type 1 Virion Maturation,” Antimicrobial Agents and Chemotherapy, Vol. 53, No. 12, 2009, pp. 5080-5087. doi:10.1128/AAC.00759-09
[117] L. Huang, P. Ho, K. H. Lee and C. H. Chen, “Synthesis and Anti-HIV Activity of Bi-Functional Betulinic Acid Derivatives,” Bioorganic & Medicinal Chemistry, Vol. 14, No. 7, 2006, pp. 2279-2289. doi:10.1016/j.bmc.2005.11.016
[118] Z. Dang, W. Lai, K. Qian, P. Ho, K. H. Lee, C. H. Chen and L. Huang, “Betulinic Acid Derivatives as Human Immunodeficiency Virus Type 2 (HIV-2) Inhibitors,” Journal of Medicinal Chemistry, Vol. 52, No. 23, 2009, pp. 7887-7891. doi:10.1021/jm9004253
[119] I. Huvent, S. S. Hong, C. Fournier, B. Gay, J. Tournier, C. Carriere, M. Courcoul, R. Vigne, B. Spire and P. Boulanger, “Interaction and Co-Encapsidation of Human Immunodeficiency Virus Type 1 Gag and Vif Recombinant Proteins,” Journal of General Virology, Vol. 79, 1998, pp. 1069-1081.
[120] N. Morellet, S. Druillennec, C. Lenoir, S. Bouaziz and B. P. Roques, “Helical Structure Determined by NMR of the HIV-1 (345-392)Gag Sequence, Surrounding p2: Implications for Particle Assembly and RNA Packaging,” Protein Science, Vol. 14, No. 2, 2005, pp. 375-386. doi:10.1110/ps.041087605

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.