Share This Article:

Cellular Prion Protein and Sexual Dimorphic Areas in Rodents. Correlates with Alzheimer Disease

Abstract Full-Text HTML XML Download Download as PDF (Size:1764KB) PP. 384-391
DOI: 10.4236/nm.2011.24051    4,383 Downloads   7,061 Views   Citations

ABSTRACT

The cellular prion protein (PrPC) expression was analyzed by western-blot in the rat, in two different dimorphic brain areas such as the anterior hypothalamic and the preoptic areas. In both cases, the PrPC expression was increased in males, implying a sexual dimorphism for the PrPC protein. The study was also made in other two brain areas, frontal cortex and hyppocampus (a clearly dimorphic area); in this case, mice of different ages of both sexes were used. In both brain areas analyzed, although the PrPC expression was increased with age until the adult age (38 weeks), it was decreased in aged animals (56 weeks) in both sexes. The PrPC expression in mouse hippocampus was predominant in males in comparison to females. Moreover, the non-glycosylated band was increased with age and this increase was parallel with the increase observed for the glycolsylated band. The non-glycosylated band increases more in aged females. Altogether, these data suggest that PrP in rodents, in the brain areas analyzed, has a dimorphism role. As we discuss in the present study and in relation to previous studies of our group these data could be extrapolated to humans (specially in Alzhemer disease cases).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Cuadrado-Tejedor, A. Irujo, B. Paternain, M. Madrid and J. Velayos, "Cellular Prion Protein and Sexual Dimorphic Areas in Rodents. Correlates with Alzheimer Disease," Neuroscience and Medicine, Vol. 2 No. 4, 2011, pp. 384-391. doi: 10.4236/nm.2011.24051.

References

[1] F. M. P. Krujiver, A. F. Guasti, M. Fodor, E. M. Kraan and D. F. Swaab, “Sex Differences in Androgen Receptors of the Human Mamillary Bodies Are Related to Endocrine Status Rather Than to Sexual Orientation or Transexuallity,” Journal of Clinic Endocrinology and Metabolism, Vol. 86, No. 2, 2001, pp. 818-827. doi:10.1210/jc.86.2.818
[2] F. Loup, E. Tribollet, M. Dbois-Dauphin and J. J. Dreifuss, “Localization of High—Affinity Binding Sites for Oxitocin and Vasopressin in the Human Brain. An Autordiographic Study,” Brain Research, Vol. 555, 1991, pp. 220-232. doi:10.1016/0006-8993(91)90345-V
[3] K. Jordan, T. Würstenberg, H. J. Heinze, P. Michael and L. Jancjke, “Women and Men Exhibit Different Cortical Activation Patterns during Mental Rotation Tasks,” Neuropsychologia, Vol. 40, No. 13, 2002, pp. 2397-2408. doi:10.1016/S0028-3932(02)00076-3
[4] B. K. Modney and G. I. Hatton, “Motherhood Modifies Magnocellular Neuronal Interrelationships in Functionally Meaningful Ways,” In: N. A. Kasnegor and R. S. Bridges, Eds., Mammalian Parenting, Oxford University Press, New York, 1990, pp. 306-323.
[5] D. F. Swaab, L. J. Gooren and M. A. Hofman, “Brain Research, Gender and Sexual Orientation,” Journal of Homosexuality, Vol. 28, No. 3-4, 1995, pp. 283-301. doi:10.1300/J082v28n03_07
[6] P. Vasey and J. Pfaus, “A Sexually Dimorphic Hypothalamic Nucleus in a Macaque Species with Frequent Female-Female Mounting and Same-Sex Partner Preference,” Behavior Brain Research, Vol. 157, No. 2, 2004, pp. 265-272. doi:10.1016/j.bbr.2004.07.005
[7] D. F. Swaab and A. Fliers, “Sexually Dimorphic Nucleus in the Human Brain,” Science, Vol. 228, 1985, pp. 1112-117. doi:10.1126/science.3992248
[8] O. Alekseyenko, P. Waters, H. Zhou and M. Baum, “Bilateral Damage to the Sexually Dimorphic Medial Hypothalamic Fos Response to Male Body Odors,” Physiology & Behavior, Vol. 90, No. 2-3, 2006, pp. 438-449. doi:10.1016/j.physbeh.2006.10.005
[9] W. Byne, M. S. Lasco, A. Keruether, A. Shinwri and H. Tobet, “The Interstitial Nuclei of the Human Anterior Hypothalamus: Assesment for Sexual Variation in Volume and Neuronal Size, Density and Number,” Brain Research, Vol. 856, No. 1-2, 2000, pp. 254-258. doi:10.1016/S0006-8993(99)02458-0
[10] I. Susana and M. Dulce Madeira, “Estrogen Modulates the Sexually Dimorphic Synaptic Connectivity of the Vomeromedial Nucleus,” Journal of Comparative Neurology, Vol. 484, 2005, pp. 68-79. doi:10.1002/cne.20451
[11] A. Guillamón and S. Segovia, “Sez Differences in the Vomeronasal System,” Brain Research Bulletin, Vol. 44, No. 4, 1997, pp. 377-382. doi:10.1016/S0361-9230(97)00217-7
[12] X. Protopopescu, H. Pan, M. Altemus, O. Tuescher, M. Polanecsky, B. McEwen, D. Siversweig and E. Stern, “Orbitofrontal Cortex Activity Related to Emotional Processing Changes across the Menstrual Cycle,” Proceedings of the National Academy of Sciences (PNAS), Vol. 102, No. 44, 2005, pp. 16060-16065. doi:10.1073/pnas.0502818102
[13] L. Cahill, M. Uncapher, L. Kilptick, M. T. Alkire and J. Turner, “Sex Related Hemispheric Lateralization of Amygdale Function in Emotionally Influenced Memory: An FMRI Invesiation,” Learning & Memory, Vol. 11, No. 3, 2004, pp. 261-266. doi:10.1101/lm.70504
[14] G. Hamann, “Sex Differences in the Responses of Human Amygdale,” Neuroscientist, Vol. 11, No. 4, 2005, pp. 288-293. doi:10.1177/1073858404271981
[15] W. C. J. Chung, G. J. de Vies and D. F. Swaab, “Sexual Differentiation of the Bed Nucleus of the Stria Terminalis in Human May Extend into Adulthood,” Journal of Neuroscience, Vol. 22, No. 3, 2002, pp. 1027-1033.
[16] K. Petersen and D. Sherry, “No Sex Differences Occurs in Hippocampus, Food-Storing, or Memory for Food Ches in Black-Capped Chickadees,” Behavior Brain Research, Vol. 79, 1995, pp. 15-22.
[17] J. M. Goldstein, L. J. Sidman, N. J. Horton, N. Makris, D. N. Kennedy, V. S. Cavines Jr., S. V. Faraone and M. T. Tsuang, “Normal Sexual Dimorphism of the Adult Human Brain Assessed by in Vivo Magnetic Resonance Imaging,” Cerebral Cortex, Vol. 11, No. 6, 2001, pp. 490- 497. doi:10.1093/cercor/11.6.490
[18] E. C. Bell, M. C. Wilson, A. H. Wilman, S. Dave and P. H. Silverstone, “Males and Females Differ in Brain Activation during Congnitive Tasks,” Neuroimage, Vol. 30, No. 2, 2006, pp. 529-538. doi:10.1016/j.neuroimage.2005.09.049
[19] J. Pujol, A. López, N. Cardoner, J. Vallejo, A. Capdevila, and T. Paus, “Anatomical Variability of the Anterior Cingulate Gurus and Basic Brain Dimensions of Human Personality,” Neuroimage, Vol. 15, No. 4, 2002, pp. 847- 855. doi:10.1006/nimg.2001.1004
[20] S. M. Breedlove and A. P. Arnold, “Sexually Dimorphic Motor Nucleus in the Lumbar Spinal Cord: Response to Adult Hormone Manipulation, Absence in Androgen-Intensive Rats,” Brain Research, Vol. 225, 2, 1981, pp. 297-307. doi:10.1016/0006-8993(81)90837-4
[21] P. E. Bendheim, H. R. Brown, R. D. Rudelli, J. Scala, N. L. Goller, G. Y. Wen, et al., “Nearly Ubiquitous Tissue Distribution of the Scrapie Agent Precursor Protein,” Neurology, Vol. 42, 1992, pp. 149-156.
[22] J. L. Velayos, A. Irujo, M. Cuadrado-Tejedor, B. Paternain, F. J. Moleres and V. Ferrer, “La Proteína Priónica Celular en el Sistema Nervioso Central se Mamíferos, Correlatos anatomoclínicos,” Neurologia, Vol. 25, No. 4, 2010.
[23] F. Checler and B. Vincent, “Alzheimer’s and Prion Diseases: Distinct Pathologies, Common Proteolytic Denominators,” Trends in Neruosciences, Vol. 25, No. 12, 2002, pp. 7-12. doi:10.1016/S0166-2236(02)02263-4
[24] T. Voigtlander, S. Klopel, P. Birner, C. Jaurius, H. Filcker, S. Verghese-Nikolakaki, T. Sklaviadis, M. Gentchev and H. Budka, “Marked Increase of Neuronal Prion Protein immunoreactivity in Alzheimer’s Disease and Human Prion Diseases,” Acta Neuropatologica, Vol. 101, No. 5, 2001, pp. 417-423.
[25] I. Ferrer, R. Blanco, M. Carmona, B. Puig, R. Ribera, M. J. Rey and T. Ribalta, “Prion Protein Expression in Senile Plaques in Alzheimer’s Disease,” Acta Neuropathologica, Vol. 101, No. 1, 2001, pp. 49-56.
[26] I. Ferrer, M. Freixas, R. Blanco, M. Caromna and B. Puig, “Selectibe PrP-like Protein, Doppel Immunoreactivity in Dustrophic Neuritis of Senile Palaques in Alzheimer’s Disease,” Neuropathology and Applied Neurobiology, Vol. 30, No. 4, 2004, pp. 329-337. doi:10.1111/j.1365-2990.2003.00534.x
[27] B. H. Kim, H. G. Lee, J. K. Choi, J. I. Kim, E. K. Choi, R. I. Carp and Y. S. Kim, “The Cellular Prion Protein (PrPC) Prevents Apoptotic Neuronal Cell Death and Mitocondrial Disfunction Induced by Serum Deprivation,” Molecular Brain Research, Vol. 124, 2004, pp. 40-50. doi:10.1016/j.molbrainres.2004.02.005
[28] R. Veerhuis, R. S. Boshuizen and A. Familian, “Amyloid Associated Proteins in Alzheimer’s and Prion Diseases,” Current Drug Targets-CNS & Neurological Disorders, Vol. 4, No. 3, 2005, pp. 235-248. doi:10.2174/1568007054038184
[29] P. Rezaie, C. C. Pontikis, L. Hudson, N. J. Cairns and P. L. Lantos, “Expression of Cellular Prion Protein in the Frontal and Occitpital Lobe in Allzheimer’s Disease, Diffuse Lewy Body Disease, and in Normal Brain: An immunohistochemical Study,” Journal of Histochemistry Cytochemistry, Vol. 53, No. 8, 2005, pp. 929-940. doi:10.1369/jhc.4A6551.2005
[30] J. L. Velayos, A. Irujo, M. Cuadrado-Tejedor, B. Paternain, F. J. Moleres and V. Ferrer, “The Cellular Prion Protein and Its Role in Alzheimer’s Disease,” Prion, Vol. 3, 2 No., 2009, pp. 110-117. doi:10.4161/pri.3.2.9135
[31] F. P. M. Krujiver, R. Balesar, E. Esplia, A. M. Unga, A. Unmehopa and D. F. Swaab, “Estrogen Receptor Distribution in the Human Hypothalamus in Relation to Sex and Endocrine Status,” Journal of Comparative Neurology, Vol. 454, No. 2, 2002, pp. 115-139. doi:10.1002/cne.10416
[32] N. López Moratalla, “Cerebro de Mujer y Cerebro de varón,” Instituto de Ciencias para la Familia, Universidad de Navarra, 2008.
[33] R. A. Gorski, J. H. Gordon, J. E. Shryne and A. M. Southam, “Evidence for a Morphological Sex Difference within the Medial Preoptic Area of the Rat Brain,” Brain Research, Vol. 148, 1978, pp. 333-346. doi:10.1016/0006-8993(78)90723-0
[34] R. A. Gorski, R. E. Haslan, C. O. Jacobson, J. E. Shryne and A. M. Soutam, “Evidence for the Existence of a Sexually Dimorphic Nucleus in the Preoptic Area of the Rat,” Journal of Comparative Neurology, Vol. 198, 1980, pp. 529-539. doi:10.1002/cne.901930214
[35] S. Ito, S. Murakami, K. Yamanouchi and Y. Arai, “Prenatal Androgen Exposure, Preoptic Area and Reproductive Functions in the Female Rat,” Brain & Development, Vol. 8, 1986, pp. 463-468.
[36] C. Isgor and D. R. Sengelaub “Prenatal Gonadal Steroids Affect Adult Spatial Behaviour, CA1 and CA3 Pyramidal Cell Morphology in Rats,” Hormones and Behavior, Vol. 34, No. 2, 1998, pp. 183-198. doi:10.1006/hbeh.1998.1477
[37] C. Loeuillet, P. Y. Boelle, C. Lemaire-Vieille, M. Baldazza, P. Naquet, P. Chambon, M. F. Cesbron-Delauw, J. Valleron and J. Y. Cesbron, “Sex Effect in Mouse and Human Prion Disease,” Journal of Infectious Disease, Vol. 202, No. 4, 2010, pp. 648-654.
[38] F. Nottebom and A. P. Arnold, “Sexual Dimorphism in Vocal Control Areas of the Songbird Brain,” Science, Vol. 194, No. 4261, 1976, pp. 211-213. doi:10.1126/science.959852
[39] G. W. Harris, “Hormonal Differentiation of the Developing Central Nervous System with Respect to Patterns of Endocrine Function,” Philosophical Transactions of the Royal Society B, Vol. 259, No. 828, 1970, pp. 165-176. doi:10.1098/rstb.1970.0056
[40] G. Raisman and P. M. Field, “Secual Dimorphism in the Neuropil of the Preoptic Area of the Rat and Its Dependence on Neonatal Androgen,” Brain Research, Vol. 54, 1973, pp. 1-29. doi:10.1016/0006-8993(73)90030-9
[41] F. H. Güldner, “Sexual Dimorphism of Axo-Spines Synapses and Postsynatic Density Material in the Suprachiasmatic Nucleus of the Rat,” Nuroscience Letters, Vol. 28, No. 2, 1982, pp. 145-150. doi:10.1016/0304-3940(82)90143-4
[42] G. J. De Vries and A. A. Sluiter, “The Influence of Androgens on the DEVELOPMEnt of a Sex Difference in the Vasopressinergic Innervation of the Rat Lateral Septum,” Developmental Brain Research, Vol. 8, No. 2-3, 1983, pp. 377-380. doi:10.1016/0165-3806(83)90019-6
[43] E. Gould, A. Westlind-Danielsson, M. Frankfurt and B. S. McEwen, “Sex Differences and Thyroid Hormone Sensitivity of Hippocampal Pyramidal Cells,” Journal of Neuroscience, Vol. 10, 1990, pp. 996-1003.
[44] J. M. Juraska, “Sex Differences in ‘Cognitive’ Regions of the Rat Brain,” Psyconeuroendocrinology, Vol. 16, 1991, pp. 105-119. doi:10.1016/0306-4530(91)90073-3
[45] A. Matsumoto, “Synaptogenic Action of Sex Steroids in Developing and Adult Neuroendocrine Brain,” Psyconeuroendocrinology, Vol. 16, 1991, pp. 25-40. doi:10.1016/0306-4530(91)90069-6
[46] L. M. García-Segura, J. A. Chowen, A. Párducz and F. Naftolin, “Gonadal Hormones as Promoters of Structural Synaptic Plasticity: Cellular Mechanisms,” Progress in Neurobiology, Vol. 44, No. 3, 1994, pp. 279-307. doi:10.1016/0301-0082(94)90042-6
[47] H. Sakamoto, Y. Mezaki, H. Shuikimi, K. Ukena and K. Tsutsuy, “Dendritic Growth and Spine Formation in Response to Estrogfen in Developing Purkije Cell,” Endocrinology, Vol. 144, No. 10, 2003, pp. 4466-4477. doi:10.1210/en.2003-0307
[48] B. M. Cooke, M. R. Stokas and C. S. Woolley, “Morphological Sex Differences Nad Laterality in the Prepubertal Medial Amygdale,” Journal of Comparative Neurology, Vol. 501, No. 6, 2007, pp. 904-915. doi:10.1002/cne.21281
[49] M. K. Park, T. A. Hoang, J. D. Belluzzi and F. M. Leslie, “Gender Specific Effect of Neonatal Handling on Stress Reactivity of Adolescent Rats,” Journal of Neuroendo-crinology, Vol. 15, No. 3, 2003, pp. 289-295. doi:10.1046/j.1365-2826.2003.01010.x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.