Share This Article:

Temperature Dependency of Photosynthesis of Sphagnum spp. Distributed in the Warm-Temperate and the Cool-Temperate Mires of Japan

Abstract Full-Text HTML Download Download as PDF (Size:1070KB) PP. 716-725
DOI: 10.4236/ajps.2011.25086    4,012 Downloads   6,890 Views   Citations

ABSTRACT

We investigated the temperature dependency of photosynthetic rates for five Sphagnum species: Sphagnum palustre, S. fimbriatum in the Tadewara mire (south-western Japan in a warm-temperate zone) and S. papillosum, S. fuscum, S. fallax in the East Ochiishi mire (north-eastern Japan in a cool-temperate zone) measuring photosynthetic light response within a temperature range between 5 and 40C. The maximum photosynthetic rate was obtained at T = 35C for S. palustre, S. fuscum and S. papillosum, and at T = 30C for S. fimbriatum and S. fallax. Photosynthetic rates of all these species showed a maximum at 300 - 500 μmol·m-2·s-1 of PPFD and it decreased at higher PPFD (>500 μmol·m-2·s-1) under low temperature (5C - 10C). These results imply that Sphagnum species are not fully physiologically adapted to low temperature environments, although Sphagnum species distribute mostly in the circumpolar region.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Haraguchi and N. Yamada, "Temperature Dependency of Photosynthesis of Sphagnum spp. Distributed in the Warm-Temperate and the Cool-Temperate Mires of Japan," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 716-725. doi: 10.4236/ajps.2011.25086.

References

[1] M. Makila, M. Saarnisto and T. Kankainen, “Aapa Mires as a Carbon Sink and Source during the Holocene,” Journal of Ecology, Vol. 89, No. 4, 2001, pp. 589-599. doi:10.1046/j.0022-0477.2001.00586.x
[2] S. K. Kivimaki, M. Yli-petays and E. Tuittila, “Carbon Sink Function of Sedge and Sphagnum Patches in a Restored Cut-Away Peatland: Increased Functional Diversity Leads to Higher Production,” Journal of Applied Ecology, Vol. 45, 2008, pp. 921-929.
[3] R. S. Clymo and P. M. Hayward, “The Ecology of Sphagnum,” In: A. J. E. Smith, Ed., Bryophyte Ecology, Chapman and Hall, London, 1982, pp. 229-289. doi:10.1007/978-94-009-5891-3_8
[4] P. M. Hayward and R. S. Clymo, “The Growth of Sphagnum: Experiments on, and Simulation of, Some Effects of Light Flux and Water-Table Depth,” Journal of Ecology, Vol. 71, 1983, pp. 845-863. doi:10.2307/2259597
[5] K. E. Giller and B. D. Wheeler, “Acidification and Succession in a Flood-Plain Mire in the Norfolk Broadland, U.K.,” Journal of Ecology, Vol. 76, 1988, pp. 849-866. doi:10.2307/2260577
[6] K. J. Murray, P. C. Harley, J. Beyers, H. Walz and J. D. Tenhunen, “Water Content Effects on Photosynthetic Response of Sphagnum Mosses from the Foothills of the Philip Smith Mountains, Alaska,” Oecologia, Vol. 79, No. 2, 1989, pp. 244-250. doi:10.1007/BF00388484
[7] K. S. Maseyk, T. G. A. Green and D. Klinac, “Photosynthetic Responses of New Zealand Sphagnum Species,” New Zealand Journal of Botany, Vol. 37, No. 1, 1999, pp. 155-165. doi:10.1080/0028825X.1999.9512621
[8] K. E. van Gaalen, L. B. Flanagan and D. R.Peddle, “Photosynthesis, Chlorophyll Fluorescence and Spectral Reflectance in Sphagnum Moss at Varying Water Contents,” Oecologia, Vol. 153, No. 1, 2007, pp. 19-28. doi:10.1007/s00442-007-0718-y
[9] R. Gerdol, A. Bonora, R. Gualandri and S. Pancaldi, “CO2 Exchange, Photosynthetic Pigment Composition, and Cell Ultrastructure of Sphagnum Mosses during Dehydration and Subsequent Rehydration,” Canadian Journal of Botany, Vol. 74, No. 5, 1996, pp. 726-734. doi:10.1139/b96-091
[10] B. Schipperges and H. Rydin, “Response of Photosynthesis of Sphagnum Species from Contrasting Microhabitats to Tissue Water Content and Repeated Desiccation,” New Phytologist, Vol. 140, No. 4, 1998, pp. 677-684. doi:10.1046/j.1469-8137.1998.00311.x
[11] R. Aerts, B. Wallén and N. Malmer, “Growth-Limiting Nutrients in Sphagnum-Dominated Bogs Subject to Low and High Atmospheric Nitrogen Supply,” Journal of Ecology, Vol. 80, 1992, pp. 131-140. doi:10.2307/2261070
[12] U. Gunnarsson and H. Rydin, “Nitrogen Fertilization Reduces Sphagnum Production in Bog Communities,” New Phytologist, Vol. 147, No. 3, 2000, pp. 527-537. doi:10.1046/j.1469-8137.2000.00717.x
[13] M. M. P. D. Heijmans, H. Klees, W. de Visser and F. Berendse, “Response of a Sphagnum Bog Plant Community to Elevated CO2 and N Supply,” Plant Ecology, Vol. 162, No. 1, 2002, pp. 123-134. doi:10.1023/A:1020368130679
[14] U. Gunnarsson, G. Granberg and M. Nilsson, “Growth, Production and Interspecific Competition in Sphagnum: Effects of Temperature, Nitrogen and Sulphur Treatments on a Boreal Mire,” New Phytologist, Vol. 163, No. 2, 2004, pp. 349-359. doi:10.1111/j.1469-8137.2004.01108.x
[15] J. Limpens, F. Berendse and H. Klees, “How Phosphorus Availability Affects the Impact of Nitrogen Deposition on Sphagnum and Vascular Plants in Bogs,” Ecosystems, Vol. 7, No. 8, 2004, pp. 793-804. doi:10.1007/s10021-004-0274-9
[16] G. Granath, J. Strengbom, A. Breeuwer, M. M. P. D. Heijmans, F. Berendse and H. Rydin, “Photosynthetic Performance in Sphagnum Transplanted along a Latitudinal Nitrogen Deposition Gradient,” Oecologia, Vol. 159, No. 4, 2009, pp. 705-715. doi:10.1007/s00442-008-1261-1
[17] P. Ferguson and J. A. Lee, “The Effects of Bisulphite and Sulphate upon Photosynthesis in Sphagnum,” New Phytologist, Vol. 82, No. 3, 1979, pp. 703-712. doi:10.1111/j.1469-8137.1979.tb01665.x
[18] P. Ferguson and J. A. Lee, “Some Effects of Bisulphite and Sulphate on the Growth of Sphagnum Species in the Field,” Environmental Polluttion (Series A), Vol. 21, No. 1, 1980, pp. 59-71. doi:10.1016/0143-1471(80)90033-1
[19] R. Baxter, M. J. Emes and J. A. Lee, “Effects of the Bisulphite Ion on Growth and Photosynthesis in Sphagnum cuspidatum Hoffm,” New Phytologist, Vol. 111, No. 3, 1989, pp. 457-462. doi:10.1111/j.1469-8137.1989.tb00708.x
[20] R. Baxter, M. J. Emes and J. A. Lee, “Short Term Effects of Bisulphite on Pollution-Tolerant and Pollution Sensitive Populations of Sphagnum cuspidatum Ehrh. (ex Hoffm.),” New Phytologist, Vol. 118, No. 3, 1991, pp. 425-431. doi:10.1111/j.1469-8137.1991.tb00024.x
[21] L. Potter, J. P. Foot, S. J. M. Caporn and J. A. Lee, “The Effects of Long-Term Elevated Ozone Concentrations on the Growth and Photosynthesis of Sphagnum recurvum and Polytrichum commune,” New Phytologist, Vol. 134, No. 4, 1996, pp. 649-656. doi:10.1111/j.1469-8137.1996.tb04930.x
[22] R. Niemi, P. J. Martikainen, J. Silvola and T. Holopainen, “Ozone Effects on Sphagnum Mosses, Carbon Dioxide Exchange and Methane Emission in Boreal Peatland Microcosm,” Science of the Total Environment, Vol. 289, No. 1-3, 2002, pp. 1-12. doi:10.1016/S0048-9697(01)01012-9
[23] C. Gehrke, “Effects of Enhanced UV-B Radiation on Production-Related Properties of a Sphagnum fuscum Dominated Subarctic Bog,” Functional Ecology, Vol. 12, No. 6, 1998, pp. 940-947. doi:10.1046/j.1365-2435.1998.00273.x
[24] P. S. Searles, S. D. Flint, S. B. Díaz, M. C. Rousseaux, C. L. Ballaré and M. M. Caldwell, “Plant Response to Solar Ultraviolet-B Radiation in a Southern South American Sphagnum Peatland,” Journal of Ecology, Vol. 90, No. 4, 2002, pp. 704-713. doi:10.1046/j.1365-2745.2002.00709.x
[25] T. M. Robson, V. A. Pancotto, S. D. Flint, C. L. Ballaré, O. E. Sala, A. L. Scopel and M. M. Caldwell, “Six Years of Solar UV-B Manipulations Affect Growth of Sphagnum and Vascular Plants in a Tirra Del Fuego Peatland,” New Phytologist, Vol. 160, No. 2, 2003, pp. 379-389. doi:10.1046/j.1469-8137.2003.00898.x
[26] A. Breeuwer, M. M. P. D. Heijmans, B. J. M. Robroek and F. Berendse, “The Effect of Temperature on Growth and Competition between Sphagnum Species,” Oecologia, Vol. 156, No. 1, 2008, pp. 155-167. doi:10.1007/s00442-008-0963-8
[27] T. G. Williams and L. B. Flanagan, “Measuring and Modeling Environmental Influences on Photosynthetic Gas Exchange in Sphagnum and Pleurozium,” Plant, Cell and Environment, Vol. 21, No. 6, 1998, pp. 555-564. doi:10.1046/j.1365-3040.1998.00292.x
[28] H. Kawanishi and M. Nishida, “Meteorology and Hydrology in the Kujyu-Tadewara Mire,” In: Scientific Report on the Kujyu-Tadewara Area, Kokonoe Town and Oita Prefecture, 2002, pp. 9-18.
[29] A. Haraguchi, T. Hasegawa, T. Iyobe and H. Nishijima, “The pH Dependence of Photosynthesis and Elongation of Sphagnum squarrosum and S. girgensohnii in the Picea glehnii Mire Forest in Cape Ochiishi, North-East- ern Japan,” Aquatic Ecology, Vol. 37, No. 1, 2003, pp. 101-104. doi:10.1023/A:1022130622499
[30] Y. Ino, “Photosynthesis of Antarctic Mosses and Lichens,” Japanese Journal of Ecology, in Japanese, Vol. 41, 1991, pp. 149-158.
[31] S. C. Maberly and D. H. N.Spence, “Photosynthetic Inorganic Carbon Use by Freshwater Plants,” Journal of Ecology, Vol. 71, 1983, pp. 705-724. doi:10.2307/2259587
[32] P. C. Harley, J. D. Tenhunen, K. J. Murray and J. Beyers, “Irradiance and Temperature Effects on Photosynthesis of Tussock Tundra Sphagnum Mosses from the Foothills of the Philip Smith Mountains, Alaska,” Oecologia, Vol. 79, No. 2, 1989, pp. 251-259. doi:10.1007/BF00388485
[33] J. L. Prioul and P. Chartier, “Partitioning of Transfer and Carboxylation Components of Intracellular Resistance to Photosynthetic CO2 Fixation: A Critical Analysis of the Methods Used,” Annals of Botany, Vol. 41, 1977, pp. 789-800.
[34] G. Cornic and G. Louason, “The Effects of O2 on Net Photosynthesis at Low Temperature (5C),” Plant, Cell and Environment, Vol. 3, 1980, pp. 149-157. doi:10.1111/j.1365-3040.1980.tb00108.x
[35] S. B. Powels, J. A. Berry and O. Bj?rkman, “Interaction between Light and Chilling Temperature on the Inhibition of Photosynthesis in Chilling Sensitive Plants,” Plant, Cell and Environment, Vol. 6, No. 2, 1983, pp. 117-123. doi:10.1111/j.1365-3040.1983.tb01884.x
[36] G. Bongi and S. P. Long, “Light-Dependent Damage to Photosynthesis in Olive Leaves during Chilling and High Temperature Stress,” Plant, Cell and Environment, Vol. 10, 1987, pp. 241-249
[37] L. A. Netto, K. M. Jayaram, P. Haridas and J. T. Puthur, “Characterization of Photosynthetic Events and Associated Changes in Various Clones of Tea (Camellia Sinensis L.) under Low Temperature Conditions,” Journal of Plant Biology, Vol. 48, No. 3, 2005, pp. 326-331. doi:10.1007/BF03030530
[38] T. Asada and A. Haraguchi, “A New Locality of Sphagnum cuspidatum subsp. subrecurvum var. flaccidifolium (A. Johnson) A. Eddy in Central Kalimantan, Indonesia,” Bryology Research, in Japanese, Vol. 9, 2006, pp. 87-88.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.