Share This Article:

Physico-Chemical and Microbial Quality of Locally Composted and Imported Green Waste Composts in Oman

Abstract Full-Text HTML Download Download as PDF (Size:175KB) PP. 660-668
DOI: 10.4236/ajps.2011.25079    4,344 Downloads   8,088 Views   Citations

ABSTRACT

In this work the physical, chemical and microbial properties of four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super along with four imported GWC (Florabella, Mikskaar, Potgrond, and Shamrock) were studied to evaluate the quality of these composts with the acceptable standards. All composts showed normal physical properties, except the bad smell from sulfur reducing bacteria in Almukhasib, light brown color Plantex and one viable weed seed in Shamrock compost. The germination indexes of the composts comparable to the standard (90%) were 100% for Mikskaar, followed by Shamrock (92%), Florabella (97), Potgrond (95%), Plantex (98%), Growers (77%), and 5% for both Super and Almukhasib. The physical and chemical properties vary considerably as follows: pH 3 - 10.5, 5.1 - 6.5 (standard 5 - 8), electrical conductivity (EC) 0.4 - 10.2 mS·cm-1, 0.8 - 1.8 mS·cm-1(standard 0.0 - 4.0 mS·cm-1), moisture content (MC%) 29% - 43.7%, 64% - 74% (standard 35% - 60%) and water holding capacity (WHC%) 92% - 200% and 400% - 800% for the locally produced and imported composts, respectively. Wide ranges in the chemical properties were expressed as ammonia concentration 512.4 - 1640.1 mg·kg-1, 459.4 - 656.5 mg·kg-1(standard < 500 mg·kg-1), organic matter 17% - 67.6%, and 53.3% - 66.2% (standard 35%) for the locally composted and imported composts, respectively. The concentrations of the heavy metals (Zn, Ni, Pb, Hg, As, Cd, and Cr) were lower than the recommended levels. The average of the bacterial colony forming unit per gram of locally produced and imported composts ranged between 260 - 1740 CFU/g and 330 - 2870 CFU/g, whereas the fungal CFU were 10 - 2800 CFU/g and 27 - 1800 CFU/g, respectively. The most probable number (MPN) for coliform bacteria was 43 - 1100 CFU/g for locally produced composts, and 23 - 480 CFU/g for the imported composts. Therefore, these composts can not be used directly without effective treatment as substrate for plant growth, soil amendment and as biofertilizer.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. El-Nagerabi, A. Elshafie, S. Al-Bahry, H. AlRawahi and H. AlBurashdi, "Physico-Chemical and Microbial Quality of Locally Composted and Imported Green Waste Composts in Oman," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 660-668. doi: 10.4236/ajps.2011.25079.

References

[1] D. V. Adegunloye, F. C. Adetuyi, F. A. Akinyosoye and M. O. Doyeni, “Microbial Analysis of Compost Using Cow Dung as Booster,” Pakistan Journal of Nutrition, Vol. 6, 2007, pp. 506-610. doi:10.3923/pjn.2007.506.510
[2] R. Briancesco, A. M. Coccia, G. Chairetti, S. Della, Libera, M. Semproni and L. Bonadonna, “Assessment of Microbiological and Parasitological Quality of Composted Wastes: Health Implications,” Waste Management and Re- search, Vol. 26, No. 2, 2008, pp. 196-202. doi:10.1177/0734242X07085064
[3] K. Salvator and W. E. Sabee, “Evaluation of Fertilizer Value and Nutrient Release from Corn and Soybean Residue under Laboratory and Greenhouse Conditions,” Communication in Soil Science and Plant Analysis, Vol. 26, No. 3-4, 1995, pp. 469-484. doi:10.1080/00103629509369312
[4] J. A. Adeniran, L. B. Taiwo and R. A. Sobulo, “Effects of Organic Wastes and Method of Composting on Compost Maturity, Nutrient Composition of Compost and Yield of Two Vegetable Crops,” Journal of Sustainable Agricul- ture, Vol. 22, No. 4, 2003, pp. 95-101. doi:10.1300/J064v22n04_08
[5] Anonymous, “Municipal Solid Waste Compost,” Stan- dardization Organization for G. C. C. (GSO) 901, 1997.
[6] R. Barberis and P. Nappi, “Evaluation of Compost Stabi- lity,” In: M. de Bertoldi, et al., Eds., The Science of com- posting, Blackie Academic and Professional, Glasgow, 1996, pp. 175-184.
[7] W. Hartley, N. M. Dickison, P. Riby and N. W. Lepp, “Arsenic Mobility in Brownfield Soils Amended with Green Waste Compost or Biochar and Planted with Miscanthus,” Environmental Pollution, Vol. 157, No. 10, 2009, pp. 2654-2662. doi:10.1016/j.envpol.2009.05.011
[8] G. Straatsma, R. A. Samson, T. W. Olijnsma, H. J. M. O. P. Den Camp, J. P. G. Gerrits and L. J. L. D. van Griens- ven, “Ecology of Thermophilic Fungi in Mushroom Com- post, with Emphasis on Scytalidium thermophilum and Growth Stimulation of Agaricus biosporus Mycelium,” Applied and Environmental Microbiology, Vol. 60, 1994, pp. 454-458.
[9] R. C. Dalal, I. Gibson, D. E. Allen and N. W. Menzies, “Green Waste Compost Reduces Nitrous Oxide Emissions from Feedlot Manure Applied to Soil,” Agriculture, Eco- systems and Environment, Vol. 10, 2009, pp. 1-9.
[10] M. Ali, A. J. Griffith, K. P. Williams and D. L Jones, “Evaluating the Growth Characteristics of Lettuce in Ver- micompost and Green Waste Compost,” European Journal of Soil Biology, Vol. 43, 2007, pp. 316-319. doi:10.1016/j.ejsobi.2007.08.045
[11] A. A. Keeling, K. R. McCallum and C. P. Beckwith, “Mature Green Waste Compost Enhances Growth and Nitrogen Uptake in Wheat (Triticum aestivum L.) and Oil Seed Rape (Brassica napus L.) through the Action of Water-Extractable Factors,” Bioresource Technology, Vol. 90, No. 2, 2003, pp. 127-132. doi:10.1016/S0960-8524(03)00125-1
[12] P. Alvarenga, A. P. Goncalves, R. M. Fernandes, A. de Varennes, E. Duarte, A. C. Cunha-Queda and G. Vallin, “Reclamation of a Mine Contaminated Soil Using Bio- logically Reactive Organic Matrices,” Waste Management and Research, Vol. 27, No. 2, 2009, pp. 101-111. doi:10.1177/0734242X08091556
[13] R. Van Herwijnen, T. R. Hutchings, A. Al-Tabbaa, A. J. Moffat, M. L. Johns and S. K. Ouki, “Remediation of Metal Contaminated Soil with Mineral-Amended Com- posts,” Environmental Pollution, Vol. 150, No. 3, 2007, pp. 347-354. doi:10.1016/j.envpol.2007.01.023
[14] R. van Herwijnen, S. K. Ouki, A. Al-Tabbaa, A. J. Moffat, M. L. Johns and T. R. Hutchings, “The Effect of Two Different Composts on the Performance and Metal Uptake of Poplar Growing on Heavy Metal Contaminated Soil,” SEESOIL, Vol. 17, 2008, pp. 39-48.
[15] J. Lozano, W. J. Blok and A. J. Termorshuizen, “Effect of Compost Particle Size on Suppression of Plant Diseases,” Environmental Engineering Science, Vol. 26, No. 3, 2009, pp. 601-607. doi:10.1089/ees.2008.0002
[16] D. J. Van deer Gaag, F. R. van Noort, L. H. M. Stapel- Cuijpers, C. de Kreij, A. J. Termorshuizen, E. van Rijn, S Zmora-Nahum and Y. Chen, “The Use of Green Waste Compost in Peat-Based Potting Mixtures: Fertilization and Suppressiveness against Soil Borne Diseases,” Scien- tia Horticulturae, Vol. 114, No. 4, 2007, pp. 289-297. doi:10.1016/j.scienta.2007.06.018
[17] M. T. C. Mondini,. L Dell’Abate, Leita and A. Benedetti, “An Integrated Chemical, Thermal, and Microbiological Approach to Compost Stability Evaluation,” Journal of Environmental Quality, Vol. 32, No. 6, 2003, pp. 2379- 2386. doi:10.2134/jeq2003.2379
[18] Anonymous, “Test Method of Potting Mixes (Potting Soil),” Standardization Organization for G. C. C. (GSO) 1169, 2002.
[19] Y. Harada, K. Haga, T. Osada and M. Koshino, “Quality of Compost Produced from Animal Wastes,” JARQ, Vol. 26, No. 4, 1993, pp. 238-246.
[20] Y. Chen, Y. Inbar, B. Chefetz and Y. Hadar, “Compost and Recycling of Organic Wastes P.341-362,” In: D Rosen, et al., Eds., Modern Agriculture and Environment, Kulwer Academic Publishers, Dordrecht, 1996.
[21] K. K. Christensen, M. Carisbaek and E. Kron, “Strategies for Evaluating the Sanitary Quality of Composting,” Journal of Applied Microbiology, Vol. 92, 2002, pp. 1143-1158. doi:10.1046/j.1365-2672.2002.01648.x
[22] M. It?vaara, O. Venelampi, M. Vikman and A. Kapanen, “Compost Maturity-Problem Associated with Testing,” In: H Insam, et al., Eds., Microbiology of Composting, Springer Verlag, Heidelberg, 2002, pp. 373-382
[23] M. Benito, A. Masaguer, A. Moliner, N. Arrigo and R. M. Palma, “Chemical and Microbial Parameters for the Characterization of the Stability and Maturity of Pruning Waste Compost,” Biology of Fertile Soils, Vol. 37, No. 3, 2003, pp. 184-189.
[24] T. J. He, X. T. Logan and S. J. Traine, “Physical and Chemical Characteristics of Selected U.S. Municipal Waste Composts,” Journal of Environmental Quality, Vol. 24, No. 3, 1995, pp. 543-552. doi:10.2134/jeq1995.00472425002400030022x
[25] H. Pahren, “Microorganisms in Municipal Solid Waste and Public Health Applications,” CRC Critical Reviews in Environmental Control, Vol. 17, 1987, pp. 187-228. doi:10.1080/10643388709388334
[26] S. Dumontet, H. Dinel and S. B. Baloda, “Pathogen Reduction in Sewage Sludge by Composting and Other Biological Treatments. A review,” Biological Agriculture and Horticulture, Vol. 16, No. 4, 1999, pp. 409-430.
[27] C. Chitravadivu, V. Balakrishnan, J. Manikandan, T. Elavazhagan and S. Jayakumar, “Application of Food Waste Compost on Soil Microbial Population in Groundnut Cultivated Soil, India,” Middle-East Journal of Scientific Research, Vol. 4, No. 2, 2009, pp. 90-93.
[28] G. Sarwar, H. Schmeisky, N. Hussain, S. Muhammad, M. Ibrahim and E. Safdar, “Improvement of Soil Physical and Chemical Properties with Compost Application in Rice-Wheat Cropping System,” Pakistan Journal of Bot- any, Vol. 40, No. 1, 2008, pp. 275-282.
[29] F. Zameer, S. Meghashri, S. Copal and B. R. Rao, “Chemical and Microbial Dynamics during Composting of Herbal Pharmaceutical Industrial Waste,” E-Journal of Chemistry, Vol. 7, No. 1, 2010, pp. 143-148.
[30] M. Abd El-Hady and E. I. El-Dirdiry, “Improving Hy- drophysical Properties of Compost,” Journal of Applied Sciences Research, Vol. 2, No. 12, 2006, pp. 1137-1141.
[31] R. Orozco, S. Gschwander and O. Marfa, “Substrate Clas- sification from Particle Size Analysis,” Acta Horticulturae, Vol. 450, 1997, pp. 397-403.
[32] G. C. S. Wilson, “The Physio-Chemical and Physical Properties of Horticultural Substrates,” Acta Horticulturae, Vol. 150, 1983, pp. 19-32.
[33] S. A. F. El-Nagerabi and A. E Elshafie, “Incidence of See-Borne Fungi and Aflatoxins in Sudanese Lentil Seeds,” Mycopathologia, Vol. 149, 2000, pp. 151-156. doi:10.1023/A:1007241125586
[34] Y. Inbar, Y. Chen and Y. Hadar, “Humic Substances Formed during the Composting of Organic Matter,” Soil Science Society of America Journal, Vol. 54, No. 5, 1990, pp. 1316-1323. doi:10.2136/sssaj1990.03615995005400050019x
[35] A. C. Petrus, O. H. Ahmed, A. N. Muhamed, H. M. Nas- sir, M. Jiwan and M. G Banta, “Chemical Characteristic of Compost and Humic Acid from Sago Waste (Metroxylon sagu) ,” American Journal of Applied Sci- ences, Vol. 6, No. 11, 2009, pp. 1880-1884. doi:10.3844/ajassp.2009.1880.1884
[36] E. Iglesias-Jiménez and V. Pérez-Garcia, “Determination of Maturity Indices for City Refuses Composts,” Agricul- ture, Ecosystems and Environment, Vol. 38, No. 4, 1992, pp. 331-343. doi:10.1016/0167-8809(92)90154-4
[37] G. A. Wu, L. Ma and L. Q. Martinez, “Comparison of Methods for Evaluating Stability and Maturity of Biosol- ids Compost,” Journal of Environmental Quality, Vol. 29, No. 2, 2000, pp. 424-429. doi:10.2134/jeq2000.00472425002900020008x
[38] M. H. Wong, “Phytotoxicity of Refuse Compost during the Process of Maturation,” EA, Ecological and Biolo- gical, Vol. 37, 1985, pp. 159-174.
[39] H. Cai, T. Chen, H. Liu, D. Gao, G. Zheng and J. Zhang, “The Effect of Salinity and Porosity of Sewage Sludge Compost on the Growth of Vegetable Seedlings,” Scien- tia Horticulturae, Vol. 124, No. 3, 2010, pp. 381-386. doi:10.1016/j.scienta.2010.01.009
[40] J. C. Tang, “Chemical and Microbial Properties of Various Compost Products,” Soil Science and Plant Nutrition, Vol. 49, 2003, pp. 273-280.
[41] S. M. Tiquia, N. F. Y T.am and I. J. Hodgkiss, “Microbial Activity during Composting of Spent Pig-Manure Saw- dust Litter at Different Moisture Contents,” Bioresource Technology, Vol. 55, 1996, pp. 2010-206. doi:10.1016/0960-8524(95)00195-6
[42] J. Caron and V. K. N. Nkongollo, “Aeration in Growing Media: Recent Developments,” Acta Horticulturae, Vol. 481, 1999, pp. 545-551.
[43] A. H. Vuorienin and M. H. Saharinen, “Evaluation of Microbial and Chemical Parameters during Manure and Straw Composting in a Drum Composting System,” Agri- culture, Ecosystems and Environment, Vol. 66, No. 1, 1997, pp. 19-29. doi:10.1016/S0167-8809(97)00069-8
[44] A. Bary, C. Cogger and D. Sullivan, “What Does Compost Analysis Tell You about Your Compost?” Poster at Biologically Intensive and Organic Farming Research Conference, Yakima, 2002.
[45] W. F. Brinton, “Compost Quality Standards and Guide- lines,” Wood and Research Laboratory, West Lafayette, 2000, pp.1-41.
[46] Canadian Food Inspection Agency, “Standards for Metals in Fertilizers and Supplement,” Trade Memorandum, T-4-93, 1997.
[47] G. R. E. M. Van Roosmallen, J. W. A. Lustenhouwer, J. Oosthoek and M. M. G. Senden, “Heavy Metal Sources and Contamination Mechanisms in Compost Production,” Resources and Conservation, Vol. 14, 1987, pp. 321-334. doi:10.1016/0166-3097(87)90032-0
[48] E. S. Dias, S. E. Guimaraes, F. G. de Siqueira, R. da Silva and L. R Batista, “Allergenic and Toxigenic Fungi in the Compost of Cultivation of Agaricus brasiliensis,” Scien- tia Agrarian, Vol. 10, No. 6, 2009, pp. 507-511.
[49] P. D. Millner, P. B. Marsh, R. B. Snowden and J. F. Parr, “Occurrence of Aspergillus fumigatus during Composting Sewage Sludge,” Applied and Environmental Microbiology, Vol. 34, No. 6, 1977, pp. 765-772.
[50] Anonymous, “Method for Testing Municipal Solid Waste Compost,” Standardization Organization for G. C. C. (GSO) 1167, 2002.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.