Share This Article:

Degradation of Gesaprim Herbicide by Heterogeneous Photocatalysis Using Fe-Doped TiO2

Full-Text HTML Download Download as PDF (Size:270KB) PP. 669-675
DOI: 10.4236/ijg.2011.24068    4,871 Downloads   8,782 Views   Citations


Fe-doped TiO2 was prepared by the sol gel method and characterized by X-ray diffraction. All the Fe-doped TiO2 were composed of an anatase crystal form. The activity of the Fe-doped TiO2 for the degradation of the gesaprim commercial herbicide (which contains atrazine as active compound and formulating agents) was studied by varying the iron content during UV (15 W), visible light and solar irradiations. The visible light came from commercial saving energy lamps (13, 15 and 20 Watts). The gesaprim degradation rate depended on the iron content in the photo catalyst. The Fe-doped TiO2 (0.5% by weight of TiO2) showed higher TOC removal under visible light and was more active than the undoped TiO2 photo catalyst under the light irradiation sources tested. Over 90% of chemical oxygen demand abatement was achieved with both UV and visible light but less time was required to decrease the chemical oxygen demand content by using the catalyst doped with iron at 0.5% under visible light. It was observed that the degradation of gesaprim increased by increasing the iron content in the catalyst under visible light.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Quiroz, D. Gutierrez, S. Martínez and C. Bahena, "Degradation of Gesaprim Herbicide by Heterogeneous Photocatalysis Using Fe-Doped TiO2," International Journal of Geosciences, Vol. 2 No. 4, 2011, pp. 669-675. doi: 10.4236/ijg.2011.24068.


[1] W. E. Pereira and C. E. Rostad, “Occurrence, Distribu- tions, and Transport of Herbicides and Their Degradation Products in the Lower Mississippi river and Its Tributary- ies,” Environmental Science & Technology, Vol. 24, 1990, pp. 1400-1406. doi:10.1021/es00079a015
[2] S. J. Kalkhoff, K. E. Lee, S. D. Porter, P. J. Terrio and E. M. Thurman, “Herbicides and Herbicide Degradation Pro- ducts in Upper Midwest Agricultural Streams during August Base Flow Conditions,” Journal of Environmental Quality, Vol. 32, No. 3, 2003, pp. 1025-1035. doi:10.2134/jeq2003.1025
[3] C. A. Guzman-Perez, J. Soltan and J. Robertson, “Kinetics of Catalytic Ozonation of Atrazine in the Presence of Activated Carbon,” Separation and Purification Technology, Vol. 79, No. 1, 2011, pp. 8-14. doi:10.1016/j.seppur.2011.02.035
[4] V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, “Pesticides Removal from Waste Water by Activated Carbon Prepared from Waste Rubber Tire,” Water Research, Vol. 45, No. 13, 2011, pp. 4047-4055. doi:10.1016/j.watres.2011.05.016
[5] G.-C. Chen, X.-Q. Shen, Y.-Q. Zhou, X.-E. Shen, H.-L. Huang and S. U. Khan, “Adsorption Kinetics, Isotherms and Thermodynamics of Atrazine on Surface Oxidized Multiwalled Carbon Nanotubes,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 912-918. doi:10.1016/j.jhazmat.2009.04.034
[6] T. S. Jamil, T. A. Gad-Allah, H. S. Ibrahim and T. S. Saleh, “Adsorption and Isothermal Models of Atrazine by Zeolite Prepared from Egyptian Kaolin,” Solid State Sciences, Vol. 13, No. 1, 2011, pp. 198-203. doi:10.1016/j.solidstatesciences.2010.11.014
[7] I. K. Konstantinous, T. A. Albanis, D. E. Petrakis and P. J. Pomonis, “Removal of Herbicides from Aqueous Solutions by Adsorption on Al-Pillared Clays, Fe-Al Pillared Clays and Mesoporous Alumina Aluminum Phosphates,” Water Research, Vol. 34, No. 12, 2000, pp. 3123-3136. doi:10.1016/S0043-1354(00)00071-3
[8] H. Chen, E. Bramanti, I. Longo, M. Onor and C. Ferrari, “Oxidative Decomposition of Atrazine in Water in the Presence of Hydrogen Peroxide Using an Innovative Mi- Crowave Photochemical Reactor,” Journal of Hazardous Materials, Vol. 186, No. 2-3, 2011, pp. 1808-1815. doi:10.1016/j.jhazmat.2010.12.065
[9] K. V. Plakas and A. J. Karabelas, “Triazine Retention by Nanofiltration in the Presence of Organic Matter: The Role of Humic Substance Characteristics,” Journal of Membrane Science, Vol. 336, No. 1-2, 2009, pp. 86-100. doi:10.1016/j.memsci.2009.03.020
[10] E. C. Wert, F. L. Rosario-Ortiz and S. A. Snyder, “Effect of Ozone Exposure on the Oxidation of Trace Organic Contaminants in Wastewater,” Water Research, Vol. 43, No. 4, 2009, pp. 1005-1014. doi:10.1016/j.watres.2008.11.050
[11] S. Nélieu, L. Kerhoas and J. Einhorn, “Degradation of Atrazine into Ammeline by Combined Ozone/Hydrogen Peroxide Treatment in Water,” Environmental Science & Technology, Vol. 34, No. 3, 2000. pp. 430-437. doi:10.1021/es980540k
[12] B. Balci, O. Nihal, C. Richard and A. O. Mehmet, “Deg- radation of Atrazine in Aqueous Medium by Electrocata- lytically Generated Hydroxyl Radicals. A Kinetic and Mechanistic Study,” Water Research, Vol. 43, No. 7, 2009. pp. 1924-1934. doi:10.1016/j.watres.2009.01.021
[13] D. Kassinos, N. Varnava, C. Michael and P. Piera, “Ho- mogeneous Oxidation of Aqueous Solutions of Atrazine and Fenitrothion through Dark and Photo-Fenton Reactions,” Chemosphere, Vol. 74, No. 6, 2009. pp. 866-872. doi:10.1016/j.chemosphere.2008.10.008
[14] C. Lizama-Bahena, S. Silva-Martínez, D. Morales-Guz- man and M. R. Trejo-Hernández, “Sonophotocatalytic Degradation of Alazine and Gesaprim Commercial Herbicides in TiO2 Slurry,” Chemosphere, Vol. 71, No. 5, 2008, pp. 982-989. doi:10.1016/j.chemosphere.2007.11.007
[15] L. Campanella and R. Vitaliano, “Atrazine Toxicity Re- duction Following H2O2/TiO2-Photocatalyzed Reaction and Comparison with H2O2-Photolytic Reaction,” Annali di Chimica, Vol. 97, No. 1-2, 2007, pp. 123-134. doi:10.1002/adic.200690081
[16] T. A. McMurray, P. S. M. Dunlop and J. A. Byrne, “The Photocatalytic Degradation of Atrazine on Nanoparticulate TiO2 Films,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 182, No. 1, 2006, pp. 43-51. doi:10.1016/j.jphotochem.2006.01.010
[17] C. Lizama-Bahena and S. Silva-Martínez, “Photodegra- dation of Chlorbromuron, Atrazine, and Alachlor in Aqu- eous Systems under Solar Irradiation,” International Journal of Photoenergy, Vol. 81808, 2006, pp. 1-6.
[18] I. Texier, J. Ouazzani, J. Delaire and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32,” Tetrahedron, Vol. 55, No. 11, 1999, pp. 3401-3412. doi:10.1016/S0040-4020(98)01150-8
[19] Y. Zhang, Y. Li and X. Zheng, “Removal of Atrazine by Nanoscale Zero Valent Iron Supported on Organobenton- ite,” Science of the Total Environment, Vol. 409, No. 3, 2011, pp. 625-630. doi:10.1016/j.scitotenv.2010.10.015
[20] K. Hustert, P. N. Moza and B. Pouyet, “Photocatalytic Degradation of S-Triazines Herbicides,” Toxicological & Environmental Chemistry, Vol. 51, No. 52, 1993, pp. 96-101.
[21] S. M. Arnold, W. J. Hickey and R. F. Harris, “Degradation of Atrazine by Fenton’s Reagent: Condition, Optimization and Product Quantification,” Environmental Science & Technology, Vol. 29, No. 8, 1995, pp. 2083- 2089. doi:10.1021/es00008a030
[22] E. Pelizzeti, V. Maurino, C. Minero, V. Carlin, E. Pramauro, O. Zerbinati and M. L. Tosato, “Photocatalytic Degradation of Atrazine and Other S-Triazine Herbicides,” Environmental Science & Technology, Vol. 24, No. 10, 1990, pp. 1559-1565. doi:10.1021/es00080a016
[23] I. K. Konstantinou and T. A. Albanis, “Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways,” Applied Catalysis B: Environmental, Vol. 42, No. 4, 2003, pp. 319-335. doi:10.1016/S0926-3373(02)00266-7
[24] V. Hequet, C. Gonzalez and P. Le-Cloirec, “Photo- Chemical Processes for Atrazine Degradation: Methodo- logical Approach,” Water Research, Vol. 35, No. 18, 2001, pp. 4253-4260. doi:10.1016/S0043-1354(01)00166-X
[25] G. A. Pe?uela and D. Barceló, “Comparative Photodegra- dation Study of Atrazine and Desethylatrazine in Water Samples Containing Titanium,” Journal of AOAC International, Vol. 83, No. 1, 2000, pp. 53-60.
[26] H. Mě?t’ánková, J. Krysa, J. Jirkovsky, G. Mailhot and M. Bolte, “The influence of Fe(III) Speciation on Supported TiO2 Efficiency: Example of Monuron Photocatalytic Degradation,” Applied Catalysis B: Environmental, Vol. 58, No. 3-4, 2005, pp. 185-191. doi:10.1016/j.apcatb.2003.09.017
[27] K. Horst, G. Burgeth and W. Macyk, “Visible Light Photocatalysis by a Titania Transition Metal Complex,” Advances in Inorganic Chemistry, Vol. 56, 2004, pp. 241- 259. doi:10.1016/S0898-8838(04)56008-7
[28] M. Anpo, “Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocata- lysts Able to Operate under UV-Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light,” Bulletin of the Chemical Society of Japan, Vol. 77, No. 8, 2004, pp. 1427-1442. doi:10.1246/bcsj.77.1427
[29] Y. Aita, M. Komatsu, S. Yin and T. Sato, “Phase-Compo- sitional Control and Visible Light Photocatalytic Activity of Nitrogen-Doped Titania via Solvothermal Process,” Journal of Solid State Chemistry, Vol. 177, No. 9, 2004, pp. 3235-3238. doi:10.1016/j.jssc.2004.04.048
[30] M. S. Diallo and S. Nora, “Nanoparticles and water qual- ity,” Journal of Nanoparticle Research, Vol. 7, No. 4-5, 2005, pp. 325–330. doi:10.1007/s11051-005-8543-x
[31] N. Wetchakun, P. Pirakitikulr, K. Chiang and S. Phanich- phant, “Visible Light-Active Nano-Sized Fe-Doped TiO2 Photocatalysts and Their Characterization,” 2nd IEEE International Nanoelectronics Conference, Shanghai, 2008, pp. 836-841.
[32] Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi and K. Mogyorósi, “Synthesis, Structure and Photocatalytic Properties of Fe(III)-Doped TiO2 Prepared from TiCl3,” Applied Catalysis B: Environmental, Vol. 81, No. 1-2, 2008, pp. 27-37. doi:10.1016/j.apcatb.2007.11.041
[33] M. K. Seery, G. Reenamole, P. Floris and S. Pillai, “Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 189, No. 2-3, 2007, pp. 259-263. doi:10.1016/j.jphotochem.2007.02.010
[34] B. Tryba, “Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications,” International Journal of Photoenergy, Vol. 2008, 2008, pp. 1-15. doi:10.1155/2008/721824
[35] A. Katsambas, C. A. Varotsos, G. Veziryianni and C. Antoniou, “Surface Solar Ultraviolet Radiation: A Theoretical Approach of the SUVR Reaching the Ground in Athens, Greece,” Environmental Science and Pollution Research, Vol. 4, No. 2, 1997, pp. 69-73. doi:10.1007/BF02986280
[36] U. I. Gaya and H. A. Abdul, “Heterogeneous Photocata- lytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 9, No. 1, 2008, pp. 1-12. doi:10.1016/j.jphotochemrev.2007.12.003

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.