Increase in thermal stability of proteins adsorbed on biomass charcoal powder prepared from plant biomass wastes

Abstract

Thermal stability of lysozyme adsorbed on biomass charcoal powder (BCP), which was prepared from plant biomass wastes such as dumped adzuki bean, bamboo, and wood by pyrolysis without combustion under nitrogen atmosphere and comminution with a jet mill, was examined. Adsorbing lysozyme on BCP could sufficiently prevent proteins from denaturing and aggregating in an aqueous solution at high temperatures, and enhanced the refolding of thermally denatured proteins by cooling treatment. The remaining activities of lysozyme adsorbed on BCP of adzuki bean exhibited 51% by cooling treatment after the heat treatment at 90?C for 30 min, although that of native lysozyme was almost lost under the same experimental conditions. The thermostabilization effect of BCP on the remaining activity of adsorbed lysozyme was markedly dependent upon the kind of plant biomass wastes.

Share and Cite:

Noritomi, H. , Kai, R. , Iwai, D. , Tanaka, H. , Kamiya, R. , Tanaka, M. , Muneki, K. and Kato, S. (2011) Increase in thermal stability of proteins adsorbed on biomass charcoal powder prepared from plant biomass wastes. Journal of Biomedical Science and Engineering, 4, 692-698. doi: 10.4236/jbise.2011.411086.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Volkin, D.B. and Klibanov, A.M. (1989) Minimizing protein inactivation. In: Creighton T.E. Ed., Protein function: practical approach, IRL Press, Oxford, 1-24.
[2] Klibanov, A.M. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29, 1-28. doi:10.1016/S0065-2164(08)70352-6
[3] Gerlsma, S.Y. (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. Journal of Biological Chemistry, 243, 957-961.
[4] Kaushik, J. K. and Bhat, R. (1998) Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols. Journal of Physical Chemistry B, 102, 7058-7066. doi:10.1021/jp981119l
[5] Back, J.F., Oakenfull, D. and Smith, M.B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196. doi:10.1021/bi00590a025
[6] Lee, J.C. and Timasheff, S.N. (1981) The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193-7201.
[7] Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.-X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278-5283. doi:10.1021/bi00138a006
[8] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) Living with water stress: Evolution of osmolyte systems. Science, 217, 1214-1222. doi:10.1126/science.7112124
[9] Arakawa, T., Bhat, R. and Timasheff, S.N. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29, 1924- 1931. doi:10.1021/bi00459a037
[10] Ikegaya, K. (2005) Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137, 349. doi:10.1093/jb/mvi037
[11] Cioci, F. and Lavecchia, R. (1998) Thermostabilization of proteins by water-miscible additives. Chemical and Biochemical Engineering Quarterly, 12, 191-199.
[12] Noritomi, H., Minamisawa, K., Kamiya, R. and Kato, S. (2011) Thermal stability of proteins in the presence of aprotic ionic liquids. Journal of Biomedical Science and Engineering, 4, 94-99. doi:10.4236/jbise.2011.42013
[13] Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 1-9.
[14] Elnashar, M.M.M. (2010) Review article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61- 77. doi:10.4236/jbnb.2010.11008
[15] Wang, J., Liu, J. and Cepra, G. (1997) Thermal stabilization of enzymes immobilized within carbon paste electrodes. Analytical Chemistry, 69, 3124-3127. doi:10.1021/ac9702305
[16] Asuri, P., Karajanagi, S.S., Vertegel, A.A., Dordick, J.S. and Kane, R.S. (2007) Enhanced stability of enzymes adsorbed onto nanoparticles. Journal of Nanoscience and Nanotechnology, 7, 1675-1678. doi:10.1166/jnn.2007.453
[17] Chaplin, M.F. and Bucke, C. (1990) Enzyme technology. Cambridge University Press, Cambridge.
[18] Gonzalez, M.T., Molina-Sabio, M. and Rodrigues-Reinoso, F. (1994) Steam-activation of olive stone chars. Development of porosity. Carbon, 32, 1407-1413. doi:10.1016/0008-6223(94)90133-3
[19] Lussier, M.G., Shull, J.C. and Miller, D.J. (1994) Activated carbon from cherry stones. Carbon, 32, 1493-1498. doi:10.1016/0008-6223(94)90144-9
[20] Noszko, L.H., Bota, A., Simay, A. and Nagy, L.G. (1984) Preparation of activated carbon from the by- products of agricultural industry. Periodica Polytechnica, 28, 293- 297.
[21] Rivera-Utrilla, J., Ultera-Hidalgo, E., Ferro-Garcia, M.A. and Mereno-Castilla, C. (1991) Comparison of activated carbons prepared from agricultural raw materials and Spanish lignites when removing chlorophenols from aqueous solution. Carbon, 29, 613-619. doi:10.1016/0008-6223(91)90128-6
[22] Rodrigez-Reinoso, F. and Molina-Sabio, M. (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon, 30, 1111-1118. doi:10.1016/0008-6223(92)90143-K
[23] Jollès, P. (1996) Lysozymes: Model enzymes in biochemistry and biology. Birkh?user Verlag, Basel.
[24] Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100?C. Science, 228, 1280-1284. doi:10.1126/science.4001942
[25] Nohara, D., Mizutani, A. and Sakai, T. (1999) Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering, 87, 199-205. doi:10.1016/S1389-1723(99)89013-6
[26] Lumry, R. and Eyring, H. (1954) Conformation changes of proteins. Journal of Physical Chemistry, 58, 110-120. doi:10.1021/j150512a005
[27] Zale, S.E. and Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnology and Bioengineering, 25, 2221-2230. doi:10.1002/bit.260250908
[28] Ibara-Molero, B. and Sanchez-Ruiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry, 36, 9616-9624. doi:10.1021/bi9703305
[29] Griko, Y.V., Freire, E., Privalov, G., Dael, H.V. and Privalov, P.L. (1995) The unfolding thermodynamics of c-type lysozyme—A calorimetric study of the heat denaturation of equine lysozyme. Journal of Molecular Biology, 252, 447-459. doi:10.1006/jmbi.1995.0510
[30] Privalov, P.L. and Khechinashvili, N.N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure. Journal of Molecular Biology, 86, 665-684. doi:10.1016/0022-2836(74)90188-0
[31] Khechinashvili, N.N., Privalov, P.L. and Tiktopulo, E.I. (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Letters, 30, 57-60. doi:10.1016/0014-5793(73)80618-0
[32] Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230. doi:10.1126/science.181.4096.223

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.