Share This Article:

Deformation-Induced Large Ductility of Super Saturated Solid Solution Fe-Cu Alloy

Abstract Full-Text HTML Download Download as PDF (Size:2958KB) PP. 1627-1630
DOI: 10.4236/msa.2011.211216    3,617 Downloads   5,677 Views   Citations

ABSTRACT

The mechanical properties of super saturated solid solution Fe60Cu40 alloy has been investigated using compression test. The results show that the grain precipitation and phase transformation occurs during compressive deformation resulting in large work-hardening ability, high strength and large ductility. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of strong materials with large ductility.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Fu, J. Yang, Q. Bi and W. Liu, "Deformation-Induced Large Ductility of Super Saturated Solid Solution Fe-Cu Alloy," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1627-1630. doi: 10.4236/msa.2011.211216.

References

[1] M. A. Meyers, A. Mishra and D. J. Benson, “Mechanical Properties of Nanocrystalline Materials,” Progress in Materials Science, Vol. 51, No. 4, 2006, pp. 427-556. doi:10.1016/j.pmatsci.2005.08.003
[2] C. C. Koch, I. A. Ovid’ko, S. Seal and S. Veprek, “Structural Nanocrystalline Materials: Fundamentals and Applications,” Cambridge University Press, Cambridge, 2007. doi:10.1017/CBO9780511618840
[3] L. Capolungo, D. E. Spearot, M. Cherkaoui, D. L. McDowell, J. Qu and K. I. Jacob, “Dislocation Nucleation from Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation,” Journal of the Mechanics and Physics of Solids, Vol. 55, No. 11, 2007, pp. 2300-2327. doi:10.1016/j.jmps.2007.04.001
[4] K. Lu, L. Lu and S. Suresh, “Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science, Vol. 324, No. 5925, 2009, pp. 349-352.
[5] J. R?sler, H. Harders and M. B?ker, “Mechanical Behaviour of Engineering Materials,” Springer-Verlag, Berlin 2007.
[6] J. Kim, M. Lee, D. Kim and R. Wagoner, “Micromechan- ics-Based Strain Hardening Model in Consideration of Dislocation-Precipitate Interactions,” Metals and Materials International, Vol. 17, 2011, p. 291. doi:10.1007/s12540-011-0417-4
[7] Y. Ivanisenko, I. MacLaren, X. Sauvage, R. Z. Valiev and H. Fecht, “Shear-Induced α → γ Transformation in Nanoscale Fe-C Composite,” Acta Materialia, Vol. 54, No. 6, 2006, pp. 1659-1669. doi:10.1016/j.actamat.2005.11.034
[8] C. Yoo, Y. Park, Y. Jung and Y. Lee, “Effect of Grain Size on Transformation-Induced Plasticity in an Ultrafine- Grained Metastable Austenitic Steel,” Scripta Materialia, Vol. 59, No. 1, 2008, pp. 71-74. doi:10.1016/j.scriptamat.2008.02.024
[9] L. Fu, J. Yang, Q. Bi and W. Liu, “Combustion Synthesis Immiscible Nanostructured Fe-Cu Alloy,” Journal of Alloys and Compounds, Vol. 482, No. 1-2, 2009, pp. L22- L24. doi:10.1016/j.jallcom.2009.04.016
[10] H. Kakisawa, K. Minagawa and K. Halada, “Tensile Behavior Change Depending on the Microstructure of a Fe-Cu Alloy Produced from Rapidly Solidified Powder,” Materials Science and Engineering: A, Vol. 340, No. 1-2, 2003, pp. 175-180. doi:10.1016/S0921-5093(02)00171-5

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.