Share This Article:

Synthesis, Structural and Physical Properties of Cu1–xZnxFe2O4 Ferrites

Abstract Full-Text HTML Download Download as PDF (Size:1683KB) PP. 1675-1681
DOI: 10.4236/msa.2011.211223    4,609 Downloads   8,495 Views   Citations

ABSTRACT

Zn substituted Cu-Zn ferrites with a composition Cu1-xZnxFe2O4 have been synthesized by standard double sintering ceramic method and characterized by X-ray diffraction. The single-phase cubic spinel structure of all the samples has been confirmed from X-ray diffraction analyses. The lattice constant is found to increase linearly with the manganese content obeying Vegard’s law. This increase in lattice parameter is explained in terms of the sizes of component ions. It is well known that density plays a key role in controlling the properties of polycrystalline ferrites. The X-ray and bulk densities of the Cu-Zn ferrite is significantly decreased whereas porosity increased with increasing Zn concentration, thereby giving an impression that zinc might be helping in the densification of the materials. SEM micrographs exhibit a decrease in grain size with increasing Zn content. The real part of initial permeability, μ′ increase with increasing Zn contents upto x = 0.5 after that it decreases with higher Zn content.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Akhter, D. Paul, M. Hakim, D. Saha, M. Al-Mamun and A. Parveen, "Synthesis, Structural and Physical Properties of Cu1–xZnxFe2O4 Ferrites," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1675-1681. doi: 10.4236/msa.2011.211223.

References

[1] C. W. Chen, “Magnetism and Metallurgy of Soft Magnetic Materials,” North-Holland, Amsterdam, 1990, p. 395.
[2] A. Ono, T. Muruno and N. Kaihara, “Development of Non-Shrinking Soft Ferrite Composition Useful for Microinductors Applications,” Japan Electronic Engineering, Vol. 28, 1991, p. 5.
[3] T. Nomura and A. Nakano, “Japan Society of Powder and Powder Metallurgy,” Proceeding of the Sixth International Conference on Ferrites, Tokyo, 29 September - 2 October 1992, p. 1198.
[4] S. R. Murthy, “Low Temperature Sintering of MgCuZn Ferrite and Its Electrical and Magnetic Properties,” Bulletin of Materials Science, Vol. 24, No. 4, 2001, pp. 379- 383. doi:10.1007/BF02708634
[5] E. J. W. Verwey and E. L. Helimann, “Ammonia Gas Sensing Properties of Nanocrystalline Zn1–xCuxFe2O4 Doped with Noble Metal,” Journal of Chemical Physics, Vol. 15, No. 1, 1947, p. 4.
[6] A. Bhaskar, B. Rajini Kanth and S. R. Murthy, “Electrical Properties of Mn Added MgCuZn Ferrites Prepared by Microwave Sintering Method,” Journal of Magnetism and Magnetic Materials, Vol. 283, No. 1, 2004, pp. 109- 114. doi:10.1016/j.jmmm.2004.05.039
[7] N. Reslescu, E. Reslescu, C. L. Sava, F. Tudorache and P. D. Popa, “On the Effects of Ga3+ and La3+ Ions in Mg-Cu ferrite: Humidity-Sensitive Electrical Conduction,” Crystal Research Technology, Vol. 39, No. 6, 2004, pp. 548- 557. doi:10.1002/crat.200310223
[8] B. P. Ladgaonkar, P. N. Vasambekar and A. S. Vaingankar, “Cation Distribution and Magnetisation Study of Nd+3 Substituted Zn-Mg Ferrites,” Turkish Journal of Physics, Vol. 25, 2001, pp. 129-135.
[9] J. B. Nelson and D. P. Riley, “An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals,” Proceeding of Physical Society, Vol. 57, No. 3, 1945, p. 160. doi:10.1088/0959-5309/57/3/302
[10] L. Vegard, “Zeitschrift Für Physik a Hadrons and Nuclei,” Physics and Astronomy, Vol. 5, No. 1, 1921, pp. 17-26. doi:10.1007/BF01349680
[11] J. Smit and H. P. J. Wijn, “Ferrites,” Wiley, New York, 1959, p. 143.
[12] D. N. Bhosale, N. D. Choudhari, S. R. Sawant and P. P. Bakare, “Initial Permeability Studies on High Density Cu-Mg-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 173, No.1-2, 1997, pp. 51-58. doi:10.1016/S0304-8853(97)00178-9
[13] D. Ravinder and P. Vijaya Bhasker Reddy, “Thermoelectric Power Studies of Polycrystalline Magnesium Substituted Lithium Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 263, No. 1-2, 2003, pp. 127-133. doi:10.1016/S0304-8853(02)01545-7
[14] S. M. Yunus, H. S. Shim, C. H. Lee, M. A.Asgar, F. U. Ahmad and A. K. M. Zakaria, “Neutron Diffraction Studies of the Diluted Spinel Ferrite ZnxMg0.75–xCu0.25Fe2O4,” Journal of Magnetism and Magnetic Materials, Vol. 232, No. 3, 2001, pp. 121-132. doi:10.1016/S0304-8853(01)00224-4
[15] B. P. Ladgaonkar, P. N. Vasambekar and A. S. Vaingankar, “Effect of Zn2+ and Nd3+ Substitution on Magnetisation and AC Susceptibility of Mg Ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 210, No. 1-3, 2000, pp. 289-294. doi:10.1016/S0304-8853(99)00468-0
[16] S. S. Bellad, S. C. Watawe and B. K. Chougule, “Microstructure and Permeability Studies of Mixed Li-Cd Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 195, No. 1, 1999, pp. 57-64. doi:10.1016/S0304-8853(98)01073-7
[17] I. P. Parkin, G. E. Eluin, A. V. Komarov, Q. T. Bui and Q. A. Pankhurst, “Self-Propagating High Temperature Synthesis of Hexagonal Ferrites MFe12O19 (M = Sr, Ba),” Advanced Materials, Vol. 9, No. 8, 1997, pp. 643-645. doi:10.1002/adma.19970090811
[18] J. Smit and H. P. J Wijn, “Ferrites,” Wiley, New York. 1959, p. 144.
[19] K. Standley, “Oxide Magnetic Materials,” Clarendon, Oxford, 1974, p. 97.
[20] N. Reslescu, L. Sachelarie, L. Reslescu and P. D. Popa, “Influence of PbO and Ta2O5 on Some Physical Properties of MgCuZn Ferrites,” Crystal Research Technology, Vol. 36, No. 2, 2001, pp. 157-167. doi:10.1002/1521-4079(200102)36:2<157::AID-CRAT157>3.0.CO;2-9
[21] Y. Matsuo, M. Inagaki, T. Tomozawa and F. Nakao, “The Effect of Annealing in the Microstructure and Magnetic Properties of NiCuZn Ferrites,” IEEE Transactions on Magnetics, Vol. 37, 2001, p. 2359.
[22] A. A. Pandit, A. R. Shitre, D. R. Shengule and K. M. Jadhav, “Magnetic and Dielectric Properties of Mg1+xMnxFe2–2xO4 Ferrite System,” Journal of Materials Science, Vol. 40, No. 2, 2005, pp. 423-428. doi:10.1007/s10853-005-6099-x
[23] A. Muhammad and A. Maqsood, “Structural, Electrical and Magnetic Properties of Cu1–xZnxFe2O4 Ferrites (0 £ x £ 1),” Journal of Alloys and Compounds, Vol. 460, No. 1-2, 2008, pp. 54-59.
[24] R. S. Tebble and D. J. Craik, “Magnetic Materials,” John Wiley & Sons, New York, 1969.
[25] T. Abbas, M. U. Islam and M. Ashraf Ch., “Study of Sintering Behaviour and Electrical Properties of Cu-Zn-Fe-O System,” Modern Physics Letters B, Vol. 9, No. 22, 1995, pp. 1419-1426. doi:10.1142/S0217984995001418
[26] J. H. Nam, J. H. Oh and W. G. Hur, “The Effect of Mn Substitution on the Properties of NiCuZn Ferrites,” Journal of Applied Physics, Vol. 81, No. 8, 1997, pp. 4795- 4797. doi:10.1063/1.365466
[27] A. Nakano. I. Nakahata and T. Murase, “Electromagnetic Properties of Low Temperature Sintering MaCuZn Ferrites,” Japan Society of Powder and Powder Metallurgy, Vol. 48, No. 2, 2001, pp. 131-135. doi:10.2497/jjspm.48.131
[28] X. W. Qi, J. Zhou, Z. X. Yue, Z. L. Gui and L. T. Li, “Effect of Mn Substitution on the Magnetic Properties of MgCuZn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 251, No. 3, 2002, pp. 316-322. doi:10.1016/S0304-8853(02)00854-5

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.