Share This Article:

LMI Approach to Suboptimal Guaranteed Cost Control for 2-D Discrete Uncertain Systems

Abstract Full-Text HTML Download Download as PDF (Size:208KB) PP. 292-300
DOI: 10.4236/jsip.2011.24042    4,802 Downloads   7,991 Views   Citations

ABSTRACT

This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Dhawan and H. Kar, "LMI Approach to Suboptimal Guaranteed Cost Control for 2-D Discrete Uncertain Systems," Journal of Signal and Information Processing, Vol. 2 No. 4, 2011, pp. 292-300. doi: 10.4236/jsip.2011.24042.

References

[1] N. K. Bose, “Applied Multidimensional System Theory,” Van Nostrand Reinhold, New York, 1982.
[2] R. N. Bracewell, “Two-Dimensional Imaging,” Prentice-Hall, Englewood, 1995, pp. 505-537.
[3] C. Du, L. Xie and C. Zhang, “Hoo Control and Robust Stabilization of Two-Dimensional Systems in Roesser Models,” Automatica, Vol. 37, No. 2, 2001, pp. 205-211. doi:10.1016/S0005-1098(00)00155-2
[4] S. Foda and P. Agathoklis, “Control of the Metal Rolling Process: A Multidimensional System Approach,” Journal of the Franklin Institute, Vol. 329, No. 2, 1992, pp. 317-332. doi:10.1016/0016-0032(92)90037-H
[5] T. Kaczorek, “Two-Dimensional Linear Systems,” Springer-Verlag, Berlin, 1985.
[6] W.-S. Lu and A. Antoniou, “Two-Dimensional Digital Filters,” Marcel Dekker, New York, 1992.
[7] W. Marszalek, “Two-Dimensional State-Space Discrete Models for Hyperbolic Partial Differential Equations,” Applied Mathematical Modelling, Vol. 8, No. 1, 1984, pp. 11-14. doi:10.1016/0307-904X(84)90170-7
[8] J. S.-H. Tsai, J. S. Li and L.-S. Shieh, “Discretized Quadratic Optimal Control for Continuous-Time Two-Dimensional Systems,” IEEE Transactions on Circuits and Systems I, Vol. 49, No. 1, 2002, pp. 116-125. doi:10.1109/81.974886
[9] M. Yamada, L. Xu and O. Saito, “2-D Model Following Servo System,” Multidimensional Systems and Signal Processing, Vol. 10, No. 1, 1999, pp. 71-91. doi:10.1023/A:1008461019087
[10] R. Yang, L. Xie and C. Zhang, “H2 and Mixed H2/Hoo Control of Two-Dimensional Systems in Roesser Model,” Automatica, Vol. 42, No. 9, 2006, pp. 1507-1514. doi:10.1016/j.automatica.2006.04.002
[11] R. P. Roesser, “A Discrete State-Space Model for Linear Image Processing,” IEEE Transactions on Automatic Control, Vol. 20, No. 1, 1975, pp. 1-10. doi:10.1109/TAC.1975.1100844
[12] S. Attasi, “Modeling and Recursive Estimation for Double Indexed Sequences,” In: R. K. Mehra and D. G. Lainiotis, Eds., System Identification: Advances and Case Studies, Academic, New York, 1976, pp. 289-348. doi:10.1016/S0076-5392(08)60875-9
[13] E. Fornasini and G. Marchesini, “State-Space Realization Theory of Two-Dimensional Filters,” IEEE Transactions on Automatic Control, Vol. 21, No. 4, 1976, pp. 484-492. doi:10.1109/TAC.1976.1101305
[14] E. Fornasini and G. Marchesini, “Doubly Indexed Dynamical Systems: State-Space Models and Structural Properties,” Theory of Computing Systems, Vol. 12, No. 1, 1978, pp. 59-72. doi:10.1007/BF01776566
[15] N. G. El-Agizi and M. M. Fahmy, “Two-Dimensional Digital Filters with No Overflow Oscillations,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 27, No. 5, 1979, pp. 465-469. doi:10.1109/TASSP.1979.1163285
[16] J. H. Lodge and M. M. Fahmy, “Stability and Overflow Oscillations in 2-D State-Space Digital Filters,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, No. 6, 1981, pp. 1161-1167. doi:10.1109/TASSP.1981.1163712
[17] B. D. O. Anderson, P. Agathoklis, E. I. Jury and M. Mansour, “Stability and the Matrix Lypunov Equation for Discrete 2-Dimensional Systems,” IEEE Transactions on Circuits and Systems, Vol. 33, No. 3, 1986, pp. 261-267. doi:10.1109/TCS.1986.1085912
[18] P. Agathoklis, E. I. Jury and M. Mansour, “The Discrete-Time Strictly Bounded-Real Lemma and the Computation of Positive Definite Solutions to the 2-D Lyapunov Equation,” IEEE Transactions on Circuits and Systems, Vol. 36, No. 6, 1989, pp. 830-837. doi:10.1109/31.90402
[19] D. Liu and A. N. Michel, “Stability Analysis of State- Space Realizations for Two-Dimensional Filters with Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 41, No. 2, 1994, pp. 127-137. doi:10.1109/81.269049
[20] H. Kar and V. Singh, “Stability Analysis of 2-D State- Space Digital Filters Using Lyapunov Function: A Caution,” IEEE Transactions on Signal Processing, Vol. 45, No. 10, 1997, pp. 2620-2621. doi:10.1109/78.640734
[21] H. Kar and V. Singh, “Stability Analysis of 2-D State- Space Digital Filters with Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 47, No. 4, 2000, pp. 598-601. doi:10.1109/81.841865
[22] H. Kar and V. Singh, “Stability Analysis of 1-D and 2-D Fixed-Point State-Space Digital Filters Using Any Combination of Overflow and Quantization Nonlinearities,” IEEE Transactions on Signal Processing, Vol. 49, No. 5, 2001, pp. 1097-1105. doi:10.1109/78.917812
[23] T. Bose and D. A. Trautman, “Two’s Complement Quantization in Two-Dimensional State-Space Digital Filters,” IEEE Transactions on Signal Processing, Vol. 40, No. 10, 1992, pp. 2589-2592. doi:10.1109/78.157299
[24] T. Bose, “Stability of 2-D State-Space System with Overflow and Quantization,” IEEE Transactions on Circuits and Systems II, Vol. 42, No. 6, 1995, pp. 432-434. doi:10.1109/82.392319
[25] Y. Su and A. Bhaya, “On the Bose-Trautman Condition for Stability of Two-Dimensional Linear Systems,” IEEE Transactions on Signal Processing, Vol. 46, No. 7, 1998, pp. 2069-2070. doi:10.1109/78.700987
[26] A. Bhaya, E. Kaszkurewicz and Y. Su, “Stability of Asynchronous Two-Dimensional Fornasini-Marchesini Dynamical Systems,” Linear Algebra and Its Applications, Vol. 332, 2001, pp. 257-263.
[27] H. Kar and V. Singh, “Stability of 2-D Systems Described by Fornasini-Marchesini First Model,” IEEE Transactions on Signal Processing, Vol. 51, No. 6, 2003, pp. 1675-1676. doi:10.1109/TSP.2003.811237
[28] G.-D. Hu and M. Liu, “Simple Criteria for Stability of Two-Dimensional Linear Systems,” IEEE Transactions on Signal Processing, Vol. 53, No. 12, 2005, pp. 4720-4723. doi:10.1109/TSP.2005.859265
[29] T. Zhou, “Stability and Stability Margin for a Two-Dimensional System,” IEEE Transactions on Signal Processing, Vol. 54, No. 9, 2006, pp. 3483-3488. doi:10.1109/TSP.2006.879300
[30] T. Hinamoto, “2-D Lyapunov Equation and Filter Design Based on the Fornasini-Marchesini Second Model,” IEEE Transactions on Circuits and Systems I, Vol. 40, No. 2, 1993, pp. 102-110. doi:10.1109/81.219824
[31] W.-S. Lu, “On a Lyapunov Approach to Stability Analysis of 2-D Digital Filters,” IEEE Transactions on Circuits and Systems I, Vol. 41, No. 10, 1994, pp. 665-669. doi:10.1109/81.329727
[32] T. Ooba, “On Stability Analysis of 2-D Systems Based on 2-D Lyapunov Matrix Inequalities,” IEEE Transactions on Circuits and Systems I, Vol. 47, No. 8, 2000, pp. 1263-1265. doi:10.1109/81.873883
[33] T. Hinamoto, “Stability of 2-D Discrete Systems Described by the Fornasini-Marchesini Second Model,” IEEE Transactions on Circuits and Systems I, Vol. 44, No. 3, 1997, pp. 254-257. doi:10.1109/81.557373
[34] D. Liu, “Lyapunov Stability of Two-Dimensional Digital Filters with Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 45, No. 5, 1998, pp. 574-577. doi:10.1109/81.668870
[35] H. Kar and V. Singh, “An Improved Criterion for the Asymptotic Stability of 2-D Digital Filters Described by the Fornasini-Marchesini Second Model Using Saturation Arithmetic,” IEEE Transactions on Circuits and Systems I, Vol. 46, No. 11, 1999, pp. 1412-1413. doi:10.1109/81.802847
[36] H. Kar and V. Singh, “Stability Analysis of 2-D Digital Filters Described by the Fornasini-Marchesini Second Model Using Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 48, 2001, pp. 612-617.
[37] C. Du, L. Xie and Y. C. Soh, “HooFiltering of 2-D Discrete Systems,” IEEE Transactions on Signal Processing, Vol. 48, No. 6, 2000, pp. 1760-1768. doi:10.1109/78.845933
[38] H. Kar and V. Singh, “Robust Stability of 2-D Discrete Systems Described by the Fornasini-Marchesini Second Model Employing Quantization/Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems II, Vol. 51, No. 11, 2004, pp. 598-602. doi:10.1109/TCSII.2004.836880
[39] C. Du and L. Xie, “Stability Analysis and Stabilization of Uncertain Two-Dimensional Discrete Systems: An LMI Approach,” IEEE Transactions on Circuits and Systems I, Vol. 46, No. 11, 1999, pp. 1371-1374. doi:10.1109/81.802835
[40] C. Du and L. Xie, “LMI Approach to Output Feedback Stabilization of 2-D Discrete Systems,” International Journal of Control, Vol. 72, No. 2, 1999, pp. 97-106. doi:10.1080/002071799221262
[41] T. Bose, M. Q. Chen, K. S. Joo and G. F. Xu, “Stability of Two-Dimensional Discrete Systems with Periodic Coefficients,” IEEE Transactions on Circuits and Systems II, Vol. 45, No. 7, 1998, pp. 839-847. doi:10.1109/82.700930
[42] X. Guan, C. Long and G. Duan, “Robust Optimal Guaranteed Cost Control for 2-D Discrete Systems,” IET Control Theory & Applications, Vol. 148, 2001, pp. 355-361.
[43] A. Dhawan and H. Kar, “LMI-Based Criterion for the Robust Guaranteed Cost Control of 2-D Systems Described by the Fornasini-Marchesini Second Model,” Signal Processing, Vol. 87, No. 3, 2007, pp. 479-488. doi:10.1016/j.sigpro.2006.06.002
[44] A. Dhawan and H. Kar, “Optimal Guaranteed Cost Control of 2-D Discrete Uncertain Systems: An LMI Approach,” Signal Processing, Vol. 87, No. 12, 2007, pp. 3075-3085. doi:10.1016/j.sigpro.2007.06.001
[45] S. S. L. Chang and T. K. C. Peng, “Adaptive Guaranteed Cost Control Systems with Uncertain Parameters,” IEEE Transactions on Automatic Control, Vol. 17, No. 4, 1972, pp. 474-483. doi:10.1109/TAC.1972.1100037
[46] I. R. Petersen and D. C. Mcfarlane, “Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems,” IEEE Transactions on Automatic Control, Vol. 39, No. 9, 1994, pp. 1971-1977. doi:10.1109/9.317138
[47] I. R Petersen, D. C. Mcfarlane and M. A. Rotea, “Optimal Guaranteed Cost Control of Discrete-Time Uncertain Linear Systems,” International Journal of Robust and Nonlinear Control, Vol. 8, No. 8, 1998, pp. 649-657. doi:10.1002/(SICI)1099-1239(19980715)8:8<649::AID-RNC334>3.0.CO;2-6
[48] M. S. Mahmoud and L. Xie, “Guaranteed Cost Control of Uncertain Discrete Systems with Delays,” International Journal of Control, Vol. 73, No. 2, 2000, pp. 105-114. doi:10.1080/002071700219812
[49] H. Mukaidani, “An LMI Approach to Guaranteed Cost Control for Uncertain Delay Systems,” IEEE Transactions on Circuits and Systems I, Vol. 50, No. 6, 2003, pp. 795-800. doi:10.1109/TCSI.2003.812620
[50] X. Nian and J. Feng, “Guaranteed Cost Control of a Linear Uncertain System with Multiple Time-Varying Delays: An LMI Approach,” IET Control Theory & Applications, Vol. 150, 2003, pp. 17-22.
[51] L. Xie and Y. C. Soh, “Guaranteed Cost-Control of Uncertain Discrete-Time Systems,” Control Theory and Advanced Technology, Vol. 10, 1995, pp. 1235-1251.
[52] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, 1994. doi:10.1137/1.9781611970777
[53] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, “LMI Control Toolbox—for Use with Matlab,” The MATH Works Inc., Natick, 1995.
[54] V. Balakrishnan and E. Feron, “Linear Matrix Inequalities in Control Theory and Applications,” International Journal of Robust Nonlinear Control, Special Issue, 1996, pp. 896-1099.
[55] L. El Ghaoui and S. I. Niculescu, “Advances in Linear Matrix Inequality Methods in Control, Advances in Design and Control,” SIAM, Philadelphia, 2000.
[56] T. Iwasaki, “LMI and Control,” Shokodo, Japan, 1997.
[57] Y. Nesterov and A. Nemirovskii, “Interior-Point Polynomial Algorithms in Convex Programing,” SIAM, Philadelphia, 1994.
[58] L. Vandenberghe and V. Balakrishnan, “Algorithms and Software for LMI Problems in Control,” IEEE Control Systems, Vol. 17, No. 5, 1997, pp. 89-95. doi:10.1109/37.621480
[59] S. Xu, J. Lam, Z. Lin and K. Galkowski, “Positive Real Control for Uncertain Two-Dimensional Systems,” IEEE Transactions on Circuits and Systems I, Vol. 49, No. 11, 2002, pp. 1659-1666. doi:10.1109/TCSI.2002.804531
[60] P. P. Khargonekar, I. R. Petersen and K. Zhou, “Robust Stabilization of Uncertain Linear Systems: Quadratic Stability and Hoo Control Theory,” IEEE Transactions on Automatic Control, Vol. 35, 1991, pp. 356-361.
[61] L. Xie, M. Fu and C. E. De Souza, “Hoo Control and Quadratic Stabilization of Systems with Parameter Uncertainty via Output Feedback,” IEEE Transactions on Automatic Control, Vol. 37, No. 8, 1992, pp. 1253-1256. doi:10.1109/9.151120
[62] F. Yang and Y. S. Hung, “Robust Mixed H2/Hoo Filtering with Regional Pole Assignment for Uncertain Discrete-Time Systems,” IEEE Transactions on Circuits and Systems I, Vol. 49, No. 8, 2002, pp. 1236-1241. doi:10.1109/TCSI.2002.801267
[63] M. S. Mahmoud, “Robust Control and Filtering for Time-Delay Systems,” Marcel-Dekker, New York, 2000.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.