Share This Article:

Do Auditory Temporal Discrimination Tasks Measure Temporal Resolution of the CNS?

Abstract Full-Text HTML Download Download as PDF (Size:242KB) PP. 743-753
DOI: 10.4236/psych.2011.27114    4,960 Downloads   8,419 Views   Citations

ABSTRACT

Rammsayer & Brandler (2002) have proposed that auditory temporal discrimination tasks provide a measure of temporal resolution of the CNS which is argued to be partly responsible for higher order cognitive functioning. We report on two studies designed to elicit the nature of the functions underpinning these auditory tasks. Study 1 assessed whether temporal generalisation (TG) might be better considered as a measure of working memory rather than of temporal resolution of the CNS. In N = 66 undergraduates TG did not predict speed of processing tasks; however, there was evidence of a relationship between TG and working memory. Study 2 reanalyzed pre- viously published data on temporal discrimination tasks and showed that the relationship between auditory tem- poral tasks and intelligence reflects memory functions and processing speed. Auditory temporal discrimination tasks are confounded by speed and memory and should not be considered as measures of temporal resolution of the CNS.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zajac, I. & Burns, N. (2011). Do Auditory Temporal Discrimination Tasks Measure Temporal Resolution of the CNS?. Psychology, 2, 743-753. doi: 10.4236/psych.2011.27114.

References

[1] Breitmeyer, B. G. (2007). Visual masking: Past accomplishments, present status, future developments. Advances in Cognitive Psychology, 3, 9-20. doi:10.2478/v10053-008-0010-7
[2] Burns, N. R., & Nettelbeck, T. (2003). Inspection time in the structure of cognitive abilities: Where does IT fit? Intelligence, 31, 237-255. doi:10.1016/S0160-2896(02)00120-4
[3] Burns, N. R., Nettelbeck, T., & Cooper, C. (2000). Event related potential correlates of some human cognitive ability constructs. Personality and Individual Differences, 29, 157-168. doi:10.1016/S0191-8869(99)00184-1
[4] Burns, N. R., Nettelbeck, T., & McPherson, J. (2009). Attention and intelligence: A factor analytic study. Journal of Individual Differences, 30, 44-57. doi:10.1027/1614-0001.30.1.44
[5] Burns, N. R., Nettelbeck, T., McPherson, J., & Stankov, L. (2007). Perceptual learing on inspection time and motion perception. Journal of General Psychology, 134, 83-100. doi:10.3200/GENP.134.1.83-100
[6] Burns, N. R., Nettelbeck, T., & White, M. (1998). Testing the interpretation of inspection time as a measure of speed of sensory processing. Personality and Individual Differences, 24, 25-39. doi:10.1016/S0191-8869(97)00142-6
[7] Carroll, J. B. (1993). Human cognitive abilities: A survey of factor- analytic studies. Cambridge, New York: Cambridge University Press. doi:10.1017/CBO9780511571312
[8] Cattell, R. B. (1961). Culture free intelligence test, scale 3. Champaign, IL: Institute for Personality and Ability Testing.
[9] Deary, I. J. (2000). Looking down on human intelligence; from psychometrics to the brain. New York: Oxford University Press.
[10] Elbert, T., Ulrich, R., Rockstroth, B., & Lutzenberger, W. (1991). The processing of temporal intervals reflected by CNV-loke brain intervals. Psychophysiology, 28, 648-655. doi:10.1111/j.1469-8986.1991.tb01009.x
[11] Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions in the prefrontal cortex. In A. Miyake, & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102-134). Cambridge: Cambridge University Press.
[12] Evans, G., & Nettelbeck, T. (1993). Inspection time: A flash mask to reduce apparent movement effects. Personality and Individual Differences, 15, 91-94. doi:10.1016/0191-8869(93)90045-5
[13] Gibbons, H., Brandler, S., & Rammsayer, T. H. (2002). Dissociating aspects of temporal and frequency processing: A functional ERP in humans. Cortex, 39, 947-965. doi:10.1016/S0010-9452(08)70872-4
[14] Grudnik, J. L., & Kranzler, J. H. (2001). Meta-analysis of the relationship between inspection intelligence and inspection time. Intelligence, 29, 523-535. doi:10.1016/S0160-2896(01)00078-2
[15] Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18, 1085-1095.
[16] Helmbold, N., & Rammsayer, T. (2006). Timing performance as a predictor of psychometric intelligence as measured by speed and power tests. Journal of Individual Differences, 27, 20-37. doi:10.1027/1614-0001.27.1.20
[17] Helmbold, N., & Rammsayer, T. H. (2006). Timing performance as a predictor of psychometric intelligence as measured by speed and power tests. Journal of Individual Differences, 27, 20-37. doi:10.1027/1614-0001.27.1.20
[18] Helmbold, N., Troche, S., & Rammsayer, T. (2006a). Temporal information processing and pitch discrimination as predictors of general intelligence. Canadian Journal of Experimental Psychology, 60, 294-306. doi:10.1037/cjep2006027
[19] Helmbold, N., Troche, S., & Rammsayer, T. (2007a). Processing of temporal and nontemporal information as predictors of psychometric intelligence: A structural-equation-modeling approach. Journal of Personality, 75, 985-1005. doi:10.1111/j.1467-6494.2007.00463.x
[20] Helmbold, N., Troche, S. J., & Rammsayer, T. H. (2006b). Temporal information processing and pitch discrimination as predictors of general intelligence. Canadian Journal of Experimental Psychology, 60, 294-306. doi:10.1037/cjep2006027
[21] Helmbold, N., Troche, S. J., & Rammsayer, T. H. (2007b). Processing of temporal and nontemporal information as predictors of psychometric intelligence: A structural-equation-modeling approach. Journal of Personality, 75, 985-1005. doi:10.1111/j.1467-6494.2007.00463.x
[22] Hendrickson, A. E. (1982). The biological basis of intelligence part I: Theory. In H. J. Eysenck (Ed.), A model for intelligence (pp. 151-196). Berlin: Springer-Verlag.
[23] Hendrickson, D. E. (1982). The biological basis of intelligence part II: Measurement. In H. J. Eysenck (Ed.), A model for intelligence (pp. 197-230). Berlin: Springer-Verlag.
[24] Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 11-26. doi:10.1080/17470215208416600
[25] Horn, W. (1983). Leistungsprufsystem. G?ttingen, Germany: Hogrefe.
[26] Jaaskelainen, I. P., Hautamake, M., Naatanen, R., & Ilmoniemi, R. J. (1999). Temporal span of human echoic memory and mismatch negativity: Revisited. Neuroreport, 10, 1305-1308. doi:10.1097/00001756-199904260-00028
[27] J?ger, A. O., Süβ, H.-M., & Beauducel, A. (1997). Berliner intelligenzstruktur test form 4. G?ttingen, Germany: Hogrefe.
[28] Jensen, A. R. (1982). Reaction time and psycyometric g. In H. J. Eysenck (Ed.), A model for intelligence (pp. 93-132). Berlin: Springer.
[29] Jensen, A. R. (2005). Mental chronometry and the unification of differential psychology. In R. J. Sternberg & J. E. Pretz (Eds.), Cognition and Intelligence: Identifying the mechanisms of the mind (pp. 26-50). Cambridge: Cambridge University Press.
[30] Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier.
[31] Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14, 389-433. doi:10.1016/S0160-2896(05)80012-1
[32] McPherson, J., & Burns, N. R. (2005). A speeded coding task using a computer-based mouse response. Behavior Research Methods, 37, 538-544. doi:10.3758/BF03192725
[33] Michon, J. A. (1990). Implicit and explicit representations of time. In R. A. Block (Ed.), Cognitive models of psychological time (pp. 37-58). Hillsdale, NJ: Lawrence Erlbaum Associates.
[34] Muthen, L. K., & Muthen, B. O. (1998). Mplus. The comprehensive modelling program for applied research. User’s guide. Los Angeles: Muthen and Muthen.
[35] Nettelbeck, T. (1987). Inspection time and intelligence. In P. A. Vernon (Ed.), Speed of information processing and intelligence (pp. 295-346). Norwood, NJ: Ablex.
[36] Nettelbeck, T. (2001). Correlation between inspection time and psychometric abilities. A personal interpretation. Intelligence, 29, 459-474. doi:10.1016/S0160-2896(01)00072-1
[37] Nettelbeck, T. (2003). Inspection time and g. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 77-92). Amsterdam, Boston: Permagon.
[38] Neubauer, A. C., & Fink, A. (2005). Basic information processing and the psychophysiology of intelligence. In R. J. Sternberg, & J. E. Pretz (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 68-87). Cambridge: Cambridge University Press.
[39] O’Connor, T. A., & Burns, N. R. (2003). Inspection time and general speed of processing. Personality and individual differences, 35, 713-724. doi:10.1016/S0191-8869(02)00264-7
[40] Petrill, S. A., Luo, D., Thompson, L. A., & Detterman, D. K. (2001). Inspection time and the relationship among elementary cognitive tasks, general intelligence, and specific cognitive abilities. Intelligence, 29, 487-496. doi:10.1016/S0160-2896(01)00074-5
[41] Rammsayer, T. H., & Brandler, S. (2002). On the relationship between general fluid intelligence and psychophysical indicators of temporal resolution in the brain. Journal of Research in Personality, 36, 507-530. doi:10.1016/S0092-6566(02)00006-5
[42] Rammsayer, T. H., & Brandler, S. (2004). Aspects of temporal information processing: A dimensional analysis. Psychological Research, 69, 115-123. doi:10.1007/s00426-003-0164-3
[43] Rammsayer, T. H., & Brandler, S. (2007). Performance on temporal information processing as an index of general intelligence. Intelligence, 35, 123-139. doi:10.1016/j.intell.2006.04.007
[44] Reed, T., & Jensen, A. (1993). Choice reaction time and visual pathway nerve conduction velocity both correlate with intelligence but appear not to correlate with each other: Implications for information processing. Intelligence, 17, 191-203. doi:10.1016/0160-2896(93)90027-3
[45] Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Intelligence, 44, 535-551.
[46] Stankov, L. (2005). Reductionism versus charting. In R. J. Sternberg & J. E. Pretz (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 51-67). Cambridge: Cambridge University Press.
[47] Surwillo, W. W. (1968). Timing of behaviour in senescence and the role of the central nervous system. In G. A. Talland (Ed.), Human aging and behavior (pp. 1-35). New York: Academic Press.
[48] Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago Press.
[49] Vernon, P. A. (1993). Intelligence and neural efficiency. In D. K. Detterman (Ed.), Current topics in human intelligence (Vol. 3, pp. 171-188). New Jersey: Ablex Publishing Corporation.
[50] Weiss, R. H. (1971). Grundintelligenztest CFT 3 skala 3. Braunschweig, Germany: Westermann.
[51] Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18, 1-10. doi:10.1111/j.2044-8317.1965.tb00689.x
[52] White, M. (1996). Interpreting inspection time as a measure of the speed of sensory processing. Personality and Individual Differences, 20, 351-363. doi:10.1016/0191-8869(95)00171-9
[53] Zajac, I. T., & Burns, N. R. (2007). Measuring auditory inspection time in primary school children. Journal of Individual Differences, 28, 45-52. doi:10.1027/1614-0001.28.1.45

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.