Share This Article:

Industrial Progress: New Energy-Efficient Absorbents for the CO2 Separation from Natural Gas, Syngas and Flue Gas

Abstract Full-Text HTML Download Download as PDF (Size:225KB) PP. 280-288
DOI: 10.4236/aces.2011.14039    6,386 Downloads   12,057 Views   Citations

ABSTRACT

The CO2 separation from natural gas, syngas or flue gas represents an important industrial field of applications. An economic and energy-efficient CO2 separation from these gas streams is a prerequisite for sustainable industry contributions to the megatrends resource efficiency and globalization of technologies. One way of reducing operational expenditure for these separation processes is the development of better performing CO2 absorbents. Although a number of absorbents for the separation of CO2 from process gas streams exist, the need for the development of CO2 absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less operational expenditure remains. Recent industrial activities have led to the development of novel high-performance CO2 scrubbing agents that can be employed in numerous industrial processes such as natural gas treatment, purification of syngas and the scrubbing of flue gas. The objective of this paper is to introduce these new high-performance scrubbing agents and to compare their performance with other state-of-the-art absorbents. It turned out, that the evaluated absorbents offer high cyclic capacities in the range of 2.4 to 2.6 mol CO2/kg absorbent and low absorption enthalpies (–30 kJ/mol) allowing for distinctive savings in the regeneration energy of the absorbent. Calculations with the modified Kremser model resulted in a reduction of the specific reboiler heat duty of 55%. Furthermore, the absorbents are less corrosive than standard amines as indicated by the measured corrosion rates of 0.21 mm/y versus 1.18 mm/y for a piperazine/methyldiethanolamine mixture. Based on new experimental results it is shown how substantial savings in operational and capital expenditure can be realized due to favorable absorbent properties. The novel high-performance CO2 system solutions meet recent industrial absorbent requirements and allow for more efficient or new CO2 separation processes.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Rolker and M. Seiler, "Industrial Progress: New Energy-Efficient Absorbents for the CO2 Separation from Natural Gas, Syngas and Flue Gas," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 280-288. doi: 10.4236/aces.2011.14039.

References

[1] A. L. Kohl and R. B. Nielsen, “Gas Purification,” 4th Edition, Gulf Publishing, Houston, 1997.
[2] C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman and H. W. Pennline, “Separation and Capture of CO2 from large Stationary Sources and Sequestration in Geological Formations,” Journal of the Air & Waste Management Association, Vol. 53, No. 6, 2003, pp. 645-715.
[3] M. Ramezan, N. Nsakala, G. N. Liljedahl, L. E. Gearhart, R. Hestermann and B. Rederstorff, “Carbon Dioxide Capture from Existing Coal Fired Power Plants,” DOE/NETL-401/120106, National Energy Technology Laboratory, 2006.
[4] D. Aaron and C. Tsouris, “Separation of CO2 from Flue Gas: A Review,” Separation Science and Technology, Vol. 40, No. 1, 2005, pp. 321-348. doi:10.1081/SS-200042244
[5] O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer, Eds., “IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge University Working Group III of the Intergovernmental Panel on Climate Change Press, Cambridge, New York, 2005.
[6] J. Van Straelen, F. Geuzebroek, N. Goodchild, G. Protopapas and L. Mahony, “CO2 Capture for Refineries, a Practical Approach,” International Journal of Greenhouse Gas Control, Vol. 4, No. 1, 2010, pp. 316-320. doi:10.1016/j.ijggc.2009.09.022
[7] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, “Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, Vol. 2, No. 1, 2008, pp. 9-20. doi:10.1016/S1750-5836(07)00094-1
[8] J. Seagraves, M. Quinlan and J. Corley, “Fundamentals of Gas Treating,” Laurance Reid Gas Conditioning Conference (LRGCC), 2010.
[9] R. N. Tennyson and R. P. Schaaf, “Guidelines Can Help Choose Proper Processes for Gas Treating Plants,” Oil & Gas Journal, Vol. 10, No. 1, 1977, pp. 78-86.
[10] B. T. Oyenekan and G. T. Rochelle, “Energy Performance of Stripper Configurations for CO2 Capture by Aqueous Amines,” Industrial & Engineering Chemistry Resarch, Vol. 45, No. 1, 2006, pp. 2457-2464. doi:10.1021/ie050548k
[11] J. Oexmann and A. Kather, “Minimising the Regeneration Heat Duty of Post-Combustion CO2 Capture by Wet Chemical Absorption: The Misguided Focus on Low Heat of Absorptions Solvents.” International Journal of Greenhouse Gas Control, Vol. 4, No. 1, 2010, pp. 36-43. doi:10.1016/j.ijggc.2009.09.010
[12] B. A. Oyenekan and G. T. Rochelle, “Alternative Stripper Configurations for CO2 Capture by Aqueous Amines,” AIChE Journal, Vol. 53, No. 1, 2007, pp. 3144-3154. doi:10.1002/aic.11316
[13] G. T. Rochelle, “CO2 Capture by Aqueous Absorption/ Stripping Opportunities for Better Technology,” Work- shop on Carbon Sequestration Science, Washington, D.C., 2001.
[14] P. V. Danckwerts, “Gas-Liquid Reactions,” McGraw-Hill, New York, 1970.
[15] Wiley-VCH and LASTWiley-VCH, “Ullmann’s Agrochemicals,” Vol. 1, Wiley-VCH, Weinheim, 2007.
[16] G. Sartori and D. W. Savage, “Sterically Hindered Ami- nes for CO2 Removal from Gases,” Industrial & Engineering Chemistry Fundamentals, Vol. 22, No. 1, 1983, pp. 239-249. doi:10.1021/i100010a016
[17] J.-Y. Park, S. J. Yoon and H. Lee, “Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solutions: Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis,” Environmental Science & Technology, Vol. 37, No. 1, 2003, pp. 1670-1675. doi:10.1021/es0260519
[18] F. Bougie and M. C. Iliuta, “Analysis of Regeneration of Sterically Hindered Alkanolamines Aqueous Solutions with and without Activator,” Chemical Engineering Science, Vol. 65, No. 1, 2010, pp. 4746-4750. doi:10.1016/j.ces.2010.05.021
[19] R. G. F. Albry and M. S. DuPart, “Amine Plant TroubleShooting and Optimization,” Gulf Publishing Co., Houston, April 1995, pp 3-11.
[20] K. P. Shen and M.-H. Li, “Solubility of CO2 in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine,” Journal of Chemical Engineering Data, Vol. 37, No. 1, 1992, pp. 96-100. doi:10.1021/je00005a025
[21] O. F. Dawodu and A. Meisen, “Solubility of Carbon Dioxide in Aqueous Mixtures of Alkanoamines,” Journal of Chemical Engineering Data, Vol. 39, No. 1, 1994, pp. 548-552. doi:10.1021/je00015a034
[22] F.-Y. Jou, A. E. Mather and F. E. Otto, “The Solubility of CO2 in a 30 Mass Percent Monoethanolamine Solution,” Canadian Journal of Chemical Engineering, Vol. 73, No. 1, 1995, pp.140-145. doi:10.1002/cjce.5450730116
[23] J. Gmehling, “Excess Enthalpies for 1,1,1-Trichloroethane with Alkanes, Ketones, and Esters,” Journal of Chemical Engineering Data, Vol. 38, No. 1, 1993, pp. 143-146. doi:10.1021/je00009a036
[24] G. Senger and G. Wozny, “Experimentelle Untersuchung von Schaum in Packungskolonnen,” Chemie Ingenieur Technik, Vol. 83, No. 4, 2011, pp. 503-510. doi:10.1002/cite.201000210
[25] M. Seiler and J. Rolker, “Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmis- chungen,” Evonik Degussa, 2010, PCT/EP 2010/051083.
[26] M. Seiler and J. Rolker, “Verfahren zur Absorption von sauren Gasen aus Gasgemischen,” Evonik Degussa, 2010, DE 102010043838.3.
[27] F.-Y. Jou, A. E. Mather and F. E. Otto, “Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions,” Industrial Engineering Chemistry Process Design and Development, Vol. 21, No. 1, 1982, pp. 539-544. doi:10.1021/i200019a001
[28] T. R. Aikins, L. E. Parks, J. N. Iyengar, R. B. Fedich and D. Perry, “Sterically Hindered Amines-Thirty Years of Gas Treating Practice,” Annual Laurance Reid Gas Conditioning Conference, Norman, 20-23 February 2011.
[29] G. W. Xu, C.-F. Zhang, S.-J. Qin and Y.-W. Wang, “Kinetics Study on Absorption of Carbon Dioxide into Solutions of Activated Methyldiethanolamine,” Industrial & Engineering Chemistry Resesrch, Vol. 31, No. 1, 1992, pp. 921-927. doi:10.1021/ie00003a038
[30] P. W. J. Derks, “Carbon Dioxide Absorption in Pipera- zine Activated n-Methyldiethanolamine,” Ph.D. Thesis, University of Twente, Nederland, 2006.
[31] F.-Y. Jou, F.-E. Otto and A. E. Mather, “Vapor-Liquid Equlibrium of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methyldiethanolamine,” Industrial & Engineering Chemistry Resesrch, Vol. 33, No. 1, 1994, pp. 2002-2005. doi:10.1021/ie00032a016
[32] J. Seagraves and R. H. Weiland, “Treating High CO2 Gases with MDEA,” Petroleum Technology Quarterly GAS, 2009, pp. 103-109.
[33] J. A. Bullin, J. C. Polasek and S. T. Donnelly, “The Use of MDEA and Mixtures of Amines for Bulk CO2 Removal,” Bryan Research & Engineering, Inc., 2006. http://www.bre.com
[34] R. Notz, I. T?nnies, H. P. Mangalapally, S. Hoch and H. Hasse, “A Short-Cutmethod for Assessing Absorbents for Post-Combustion Carbon Dioxide Capture,” International Journal of Greenhouse Gas Control, Vol. 5, No. 3, 2010, pp. 413-421. doi:10.1016/j.ijggc.2010.03.008
[35] B. Sch?fer, A. E. Mather and K. N. Marsh, “Enthalpies of Solution of Carbon Dioxide in Mixed Solvents,” Fluid Phase Equilibria, Vol. 194-197, 2002, pp. 929-935. doi:10.1016/S0378-3812(01)00722-1
[36] J. Rolker and M. Seiler, “Elements 37,” Quaterly Science Newsletter, Vol. 4, 2011.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.