Share This Article:

Trends in global warming and evolution of polymerase basic protein 2 family from influenza a virus

Abstract Full-Text HTML Download Download as PDF (Size:137KB) PP. 458-464
DOI: 10.4236/jbise.2009.26066    4,796 Downloads   8,536 Views   Citations


Both global warming and influenza trouble humans in varying ways, therefore it is important to study the trends in both global warming and evolution of influenza A virus, in particular, proteins from influenza A virus. Recently, we have conducted two studies along this line to determine the trends between global warming and polymerase acidic protein as well as matrix protein 2. Although these two studies reveal some interesting findings, many studies are still in need because at least there are ten different proteins in influenza A virus. In this study, we analyze the trends in global warming and evolution of polymerase basic protein 2 (PB2) from influenza A virus. The PB2 evolution from 1956 to 2008 was defined using the unpredictable portion of aminoacid pair. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site and species carrying influenza A virus. The results show the similar trends in global warming and in PB2 evolution, which are in good agreement with our previous studies in polymerase acidic protein and matrix protein 2 from influenza A virus.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yan, S. and Wu, G. (2009) Trends in global warming and evolution of polymerase basic protein 2 family from influenza a virus. Journal of Biomedical Science and Engineering, 2, 458-464. doi: 10.4236/jbise.2009.26066.


[1] A. A. Hoffmann and Y. Willi, (2008) Detecting genetic re-sponses to environmental change, Nat. Rev. Genet., 9, 421–432.
[2] C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. Erasmus, M. F. De Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. Van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, and S. E. Williams, (2004) Extinction risk from climate change, Nature, 427, 145–148.
[3] G. Wu and S. Yan, (2009) What these trends suggest? Am. J. Appl. Sci., 6, 1116–1121.
[4] G. Wu and S. Yan, (2009) Trends in global warming and evolu-tion of matrix protein 2 family from influenza A virus, Inter-discip. Sci. Comput. Life. Sci., (in press).
[5] G. Wu and S. Yan, (2002) Randomness in the primary structure of protein: methods and implications, Mol. Biol. Today, 3, 55–69.
[6] G. Wu and S. Yan, (2006) Fate of influenza A virus proteins, Protein Pept. Lett., 13, 399–406.
[7] G. Wu and S. Yan, (2006) Mutation trend of hemagglutinin of influenza a virus: A review from computational mutation viewpoint, Acta Pharmacol, Sin., 27, 513–526.
[8] G. Wu and S. Yan, (2008) Lecture notes on computational mutation, Nova Science Publishers, New York.
[9] O. G. Engelhardt and E. Fodor, (2006) Functional association between viral and cellular transcription during influenza virus infection, Rev. Med. Virol., 16, 329–345.
[10] J. N. Hemerka, D. Wang, Y. Weng, W. Lu, R. S. Kaushik, J. Jin, A. F. Harmon, and F. Li, (2009) Detection and characterization of influenza A virus PA-PB2 interaction through a bimolecular fluorescence complementation assay, J. Virol., 83, 3944–3955.
[11] N. Van Hoeven, C. Pappas, J. A. Belser, T. R. Maines, H. Zeng, A. García-Sastre, R. Sasisekharan, J. M. Katz, and T. M. Tumpey, (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air, Proc. Natl. Acad. Sci., U. S. A., 106, 3366–3371.
[12] T. Watanabe, S. Watanabe, K. Shinya, J. H. Kim, M. Hatta & Y. Kawaoka, (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets, Proc. Natl. Acad. Sci. U. S. A., 106, 588–592.
[13] M. Hatta and Y. Kawaoka, (2002) The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol., 10, 340–344.
[14] T. Kuzuhara, D. Kise, H. Yoshida, T. Horita, Y. Murazaki, A. Nishimura, N. Echigo, H. Utsunomiya, and H. Tsuge, (2009) Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue, J. Biol. Chem., 284, 6855–6860.
[15] J. Steel, A. C. Lowen, L. Pena, M. Angel, A. Solórzano, R. Albrecht, D. R. Perez, A. García-Sastre, and P. Palese, (2009) Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol., 83, 1742–1753.
[16] Q. M. Le, Y. Sakai-Tagawa, M. Ozawa, M. Ito, and Y. Kawaoka, (2009) Selection of H5N1 influenza virus PB2 during replication in humans, J. Virol., 83, 5278–5281.
[17] N. A. Rayner, P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid nineteenth century: The HadSST2 dataset, J. Clim., 19, 446– 469.
[18] Climatic Research Unit, (2009)
[19] M. New, M. Hulme, and P. Jones, (2000) Representing twentieth-century space-time climate variability, Part II: Development of 1901-96 monthly grids of terrestrial surface climate, J. Clim., 13, 2217–2238.
[20] Influenza virus resources, (2009)
[21] G. Wu and S. Yan, (2008) Prediction of mutations engineered by randomness in H5N1 neuraminidases from influenza a virus. Amino Acids, 34, 81–90.
[22] G. Wu and S. Yan, (2008) Prediction of mutations initiated by internal power in H3N2 hemagglutinins of influenza a virus from North America, Int. J. Pept. Res. Ther., 14, 41–51.
[23] G. Wu and S. Yan, (2008) Prediction of mutation in H3N2 hemagglutinins of influenza A virus from North America based on different datasets, Protein Pept. Lett., 15, 144–152.
[24] G. Wu and S. Yan, (2008) Prediction of mutations engineered by randomness in H5N1 hemagglutinins of influenza a virus, Amino Acid, 35, 365–373.
[25] G. Wu and S. Yan, (2008) Three sampling strategies to predict mutations in H5N1 hemagglutinins from influenza A virus. Protein Pept. Lett., 15, 731–738.
[26] Amino-acid pair predictability, (2009) Get Lat Lon, (2009)
[27] S. Krauss, D. Walker, S. P. Pryor, L. Niles, L. Chenghong, V. S. Hinshaw, and R. G. Webster, (2004) Influenza A viruses of migrating wild aquatic birds in North America, Vector Borne Zoonotic. Dis., 4, 177–189.
[28] L. Z. Garamszegi and A. P. M?ller, (2007) Prevalence of avian influenza and host ecology, Proc. Biol. Sci., 274, 2003–2012.
[29] T. P. Weber & N. I. Stilianakis, (2007) Ecologic immunology of avian influenza (H5N1) in migratory birds, Emerg. Infect. Dis., 13, 1139–1143.
[30] A. Jahangir, Y. Watanabe, O. Chinen, S. Yamazaki, K. Sakai, M. Okamura, M. Nakamura & K. Takehara, (2008) Surveillance of avian influenza viruses in Northern pintails (Anas acuta) in Tohoku District, Japan. Avian Dis., 52, 49–53.
[31] M. Gilbert, J. Slingenbergh & X. Xiao, (2008) Climate change and avian influenza, Rev. Sci. Tech., 27, 459– 466.
[32] Louchart, (2008) Emergence of long distance bird migrations: A new model integrating global climate changes, Naturwissenschaften, 95, 1109–1119.
[33] S. de La Rocque, J. A. Rioux & J. Slingenbergh, (2008) Climate change: effects on animal disease systems and implications for surveillance and control, Rev. Sci. Tech., 27, 339–354.
[34] S. Morand & J. F. Guégan, (2008) How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes, Rev. Sci. Tech., 27, 355–366.
[35] E. A. Gould & S. Higgs, (2009) Impact of climate change and other factors on emerging arbovirus diseases, Trans. R. Soc. Trop. Med. Hyg., 103, 109–121.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.