Share This Article:

Synthesis of Sn-3.5Ag Alloy Nanosolder by Chemical Reduction Method

Abstract Full-Text HTML Download Download as PDF (Size:805KB) PP. 1480-1484
DOI: 10.4236/msa.2011.210199    4,134 Downloads   7,511 Views   Citations

ABSTRACT

The synthesis of Sn-3.5Ag alloy nanosolder was investigated by chemical reduction method. In this method, chemical precipitation was achieved by using sodium NaBH4 as a reducing agent and PVP (poly-m-vinyl 2- pyrrolidone) as a stabilizer. The experimental results obtained with different amounts of NaBH4 and PVP were compared. X-ray diffraction (XRD) patterns revealed that Ag3Sn was formed due to the successful alloying process. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) demonstrated a change in the morphology of Sn-3.5 Ag alloy nanosolder with increase in the PVP content in the bath. The size of the nanoparticles ranged from 300 to 700 nm. The nanosolder/nanoparticles were thus synthesized successfully under controlled and optimized chemical reduction process.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Pan, C. Lin, U. Mohanty and J. Chou, "Synthesis of Sn-3.5Ag Alloy Nanosolder by Chemical Reduction Method," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1480-1484. doi: 10.4236/msa.2011.210199.

References

[1] S. M. Sze, “VLSI Technology,” McGraw-Hill, Boston, 1988.
[2] K. M. Monahan, “Enabling Double Patterning at the 32 nm Node,” IEEE International Symposium on Semiconductor Manufacturing, Tokyo, 25-27 September 2006, pp. 126-129. doi:10.1109/ISSM.2006.4493040
[3] I. Artaki, A. M. Jackson and P. T. Vianco “Evaluation of Lead-Free Solder Joints in Electronic Assemblies,” Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 757-764. doi:10.1007/BF02651370
[4] P. Pawlow, “über Die Abh?ngigkeit des Schmelzpunktes von der Berfl?chenenergie Eines Festen K?rpers,” Zeitschrift für Physikalische Chemie, Vol. 65, 1909, pp. 545-548.
[5] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath and L. H. Allen. “Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements,” Physical Review Letters, Vol. 77, No. 1, 1996, pp. 99-102. doi:10.1103/PhysRevLett.77.99
[6] T. Bachels, H. J. Guntherodt and R. Schafer, “Melting of Isolated Tin Nanoparticles,” Physical Review Letters, Vol. 85, No. 6, 2000, pp. 1250-1253. doi:10.1103/PhysRevLett.85.1250
[7] R. Kofman, P. Cheyssac and F. Celestini, “Comment on Melting of Isolated Tin Nanoparticles,” Physical Review Letters, Vol. 86, No. 7, 2001, p. 1388. doi:10.1103/PhysRevLett.86.1388
[8] M. Schmidt, R. Kusche, B. Issendroff and H. Haberland, “Irregular Variations in the Melting Point of Size-Se- lected Atomic Clusters,” Nature, Vol. 393, No. 6682, 1998, pp. 238-240. doi:10.1038/30415
[9] S. J. Zhao, S. Q.Wang, D. Y .Cheng and H. Q. Ye, “Three Distinctive Melting Mechanisms in Isolated Nanoparticles,” Journal of Physical Chemistry B, Vol. 105, No. 51, 2001, pp. 12857-12860. doi:10.1021/jp012638i
[10] F. Baletto, A. Rapallo, G. Rossi and R. Ferrando, “Dynamical Effects in the formation of Magic Cluster Structures,” Physical Review B, Vol. 69, No. 23, 2004, pp. 235421-235426. doi:10.1103/PhysRevB.69.235421
[11] L. Y. Hsiao and J. G. Duh, “Synthesis and Characterisation of Lead-Free solders by Chemical Reduction Method,” Journal of Electrochemical Society, Vol. 152, No. 9, 2005, pp. J105-J109. doi:10.1149/1.1954928
[12] H. B. Bakoglu, “Circuits, Interconnections and Packaging for VLSI, Chapter 2,” Addison Wesley, Boston, 1990.
[13] Y. Gaoa, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlevd and C. Schick, “Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy,” Journal of Alloy and Compounds, Vol. 484, No. 1-2, 2009, pp. 777-781. doi:10.1016/j.jallcom.2009.05.042
[14] J. Stevanovic, V. Cosovic, J. S. Trosic, B. Jordovic and O. Pesic, Arch Materials Sci, Vol. 28, No. 1, 2007, p. 155.
[15] K. S. Chou and C Y. Ren, “Synthesis of Nanosized Silver Particles by Chemical Reduction Method,” Materials Chemistry and Physics, Vol. 64, No. 3, 2000, pp. 241-246. doi:10.1016/S0254-0584(00)00223-6
[16] Y .W. Yen and S .W. Chen, “Phase Equilibria of the Ag-Sn-Cu Ternary System,” Journal of Materials Research, Vol. 19, No. 8, 2004, pp. 2298-2305. doi:10.1557/JMR.2004.0296
[17] T. C. Huang, M. C. Wei and H. I. Chen, “Preparation of Hydrogen-Permselective Palladium-Silver Alloy Composite Membranes by Electroless Co-Deposition,” Separation and Purification Technology, Vol. 32, No. 1-3, 2003, pp. 239-245. doi:10.1016/S1383-5866(03)00063-7
[18] M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Re- lated Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews, Vol. 104, No. 1, 2004. pp. 293-346. doi:10.1021/cr030698+
[19] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “The Chemistry and Properties of Nanocrystals of Different Shapes,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1025-1102. doi:10.1021/cr030063a
[20] B. L. Cushing, V. L. Kolesnichenko and C. J. O’Connor, “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanparticles,” Chemical Reviews, Vol. 104, No. 2, 2004, pp. 3893-3946. doi:10.1021/cr030027b
[21] S. Link, Z. L. Wang and M. A. El Sayed, “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition,” Journal of Physical Chemistry B, Vol. 103, No. 18, 1999, pp. 3529-3533. doi:10.1021/jp990387w
[22] M. A. Yang, M. A. Winter and J. O. Besenhard, “Small Particle Size Multiphase Li-Alloy Anodes for Lithium- Ion-Batteries,” Solid State Ionics, Vol. 90, No. 1-4, 1996, pp. 281-287. doi:10.1016/S0167-2738(96)00389-X
[23] B. Yin, H. Ma, S. Wang and S. Chen, “Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-Vinylpyrrolidone),” Journal of Physical Chemistry B, Vol. 107, No. 34, 2003, pp. 8898-8904. doi:10.1021/jp0349031
[24] J. E. Song, D. K. Lee, Y. H. Kim and Y. S. Kang, “Pre- paration of Water Dispersed Indium Tin Oxide Sol So- lution,” Molecular Crystals and Liquid Crystals, Vol. 444, No. 1. 2006, pp. 247-255. doi:10.1080/15421400500365078
[25] A. Corrias, G. Ennas, G. Licheri, G. Marongiu and G. Paschina, “Amorphous Metallic Alloy Powders Prepared by Chemical Reduction of Metal Ions with Potassium Borohydride in Aqueous Solution,” Chemistry of Materials, Vol. 2, No. 4, 1990, pp. 363-366. doi:10.1021/cm00010a010
[26] D. Zeng and M. J. Hampden-Smith, “Synthesis and characterization of Nanophase Group 6 Metal (M) and Metal Carbide (M2C) Powders by chemical Reduction Methods,” Chemistry of Materials, Vol. 5, No. 5, 1993, pp. 681-689. doi:10.1021/cm00029a018
[27] H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Kockstra and E. K. Hyde, “Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen,” Journal of American Chemical Society, Vol. 75, No. 1, 1953, pp. 215-219. doi:10.1021/ja01097a057
[28] H. C. Brown and C. A. Brown, “New Highly Active Metal Catalysts for the Hydrolysis of Borohydride,” Journal of American Chemical Society, Vol. 84, No. 8, 1962, pp. 1493- 1494. doi:10.1021/ja00867a034
[29] H. Hirai, H. Wakabayashi and M. Komiyama, “Polymer-Protected Copper Colloids as Catalysts for Selective Hydration of Acrylonitrile,” Chemistry Letters, Vol. 12, No. 7, 1983, pp. 1047-1050. doi:10.1246/cl.1983.1047
[30] H. Hirai, H. Wakabayashi and M. Komiyama, “Preparation of Polymer Protected Colloidal Dispersion of Copper,” Bulletin of the Chemical Society of Japan, Vol. 59, No. 2, 1986, pp. 367-372. doi:10.1246/bcsj.59.367
[31] M. Green and P. O. Brien, “The Preparation of Organi- cally Functionalised Chromium and Nickel Nano Par- ticles,” Chemical Communications, Vol. 29, No. 19, 2001, pp. 1912-1913. doi:10.1039/b107108b
[32] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions,” Oxford University Press, New York, 1974.
[33] Y. Zhao, Z. Zhang and H. Dang, “Preparation of Tin Nanoparticles by Solution Dispersion,” Materials Science and Engineering A, Vol. 359, No. 1-2, 2003, pp. 405-407. doi:10.1016/S0921-5093(03)00395-2
[34] D. V. Goia, “Preparation and Formation Mechanisms of Uniform Metallic Particles in Homogeneous Solutions,” Journal of Materials Chemistry, Vol. 14, No. 4, 2004, pp. 451-458.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.