Share This Article:

Directly immobilized DNA sensor for label-free detection of herpes virus

Abstract Full-Text HTML Download Download as PDF (Size:1085KB) PP. 374-379
DOI: 10.4236/jbise.2009.26054    4,892 Downloads   9,074 Views   Citations


This paper reports the direct immobilization of deoxyribonucleic acid (DNA) sequences of Herpes simplex virus (5’–AT CAC CGA CCC GGA GAG GGA C–3’) on the surface of DNA sensor by using the cyclic voltammetric method with the presence of pyrrole. The potential was scanned from –0.7 volt to + 0.6 volt, the scanning rate was at 100mV/s. This kind of DNA sensor was developed to detect Herpes virus DNA in real samples. The FTIR was applied to verify specific binding of DNA sequence and conducting polymer, the morphology of conducting polymer doped with DNA strands was investigated by using a field emission scanning electron microscope (FE-SEM). The results showed that output signal given by coimmobilized DNA/PPy membrane sensor was better than that given by APTS immobilized membrane sensors. The sensor can detect as low as 2 nM of DNA target in real samples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tam, P. , Tuan, M. and Chien, N. (2009) Directly immobilized DNA sensor for label-free detection of herpes virus. Journal of Biomedical Science and Engineering, 2, 374-379. doi: 10.4236/jbise.2009.26054.


[1] K. Jalava, S. Nikkari, J. Jalava, E. Eerola, M. Skurnik, O. Meurman, O. Ruuskanen, A. Alanen, E. Kotilainen, P. Toivanen, and P. Kotilainen, (2000) Direct amplification of rRNA genes in diagnosis of bacterial infections, J. of Clinical Microbiology, 38, 32–39.
[2] J. Wang, G. Rivas, C. Parrado, X. Cai, and M. N. Flair, (1997) Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum, Talanta, 44, 2003–2010.
[3] M. Passamano and M. Pighini, (2006) QCM DNA- sensor for GMOs detection, Sensors and Actuators B, 118, 177–181.
[4] A. Rang, B. Linke, and B. Jansen, (2005) Detection of RNA variants transcribed from the transgene in Roundup ready soy-bean, Eur. Food Res. Tech., 220, 438–443.
[5] J. Wang, G. Rivas, X. Cai, E. Palecek, P. Nielsen, H. Shiraishi, N. Dontha, D. Luo, C. Parrado, M. Chicharro, P. A. M. Farias, F. S. Valera, D. H. Grant, M. Ozsoz, and M. N. Flair, (1997) DNA electrochemical biosensors for environmental monitoring, Analytical Chemical Act., 347, 1–8.
[6] Y. Lu, J. Liu, J. Li, P. J. Bruesehoff, C. M. B. Pavot, and A. K. Brown, (2003) New highly sensitive and selective catalytic DNA biosensors for metal Ions, Biosensors and Bioelectronics, 18, 529–540.
[7] P. Rossmanith, M. Krassnig, M. Wagner, and I. Hein, (2006) Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene, Research in Microbiology, 157, 763–771.
[8] K. E. Yoder and R. Fishel, (2006) PCR-based detection is un-able to consistently distinguish HIV 1LTR circles, Journal of Virological Methods, 138, 201–206.
[9] B. D. Rio, A. G. Binetti, M. C. Martín, M. Fernández, A. H. Magadán, and M. A. Alvarez, (2007) Multiplex PCR for the detection and identification of dairy bacteriophages in milk, Food Microbiology, 24, 75–81.
[10] I. Mannelli, M. Minunni, S. Tombelli, and M. Mascini, (2003) Quartz crystal microbalance (QCM) affinity biosensor for ge-netically modified organisms (GMOs) detection, Biosensor and Bioelectronics, 18, 129–140.
[11] X. D. Zhou, L. J. Liu, M. Hu, L. L. Wang, and J. M. Hu, (2002) Detection of hepatitis B virus by piezoelectric biosensor, J. Pharm. and Biomed. Anal, 27, 341–345.
[12] R. Epstein, I. Biran, and D. R. Walt, (2002) Fluorescence- based nucleic acid detection and micro arrays, Anal. Chimica Acta., 469, 3–36.
[13] T. Jiang, M. Minunni, P. Wilson, J. Zhang, A. P. F. Turner, and M. Mascini, (2005) Detection of TP53 mutation using a portable surface plasmon resonance DNA- based biosensor, Biosensors and Bioelectronics, 20, 1939–1945.
[14] K. Yamashita, Y. Yamaguchi, M. Miyazaki, H. Nakamura, H. Shimizu, and H. Maeda, (2004) Microfluidic system for DNA sequence detection, Chem. Eng. Journal, 101, 157–161.
[15] P. D. Thanh, M. A. Tuan, N. D. Chien, and C. Jean-Marc, (2004) Investigation on interferences of conductometric bio-sensor using tyrosinase enzyme, in Proc. 7th Vietnam-ese-German Seminar on Physics and Engineering, Vietnam, 158–161.
[16] J. Wang, M. Jiang, A. Fortes, and B. Mukherjee, (1999) New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films, Anal. Chim. Acta, 402, 7–12.
[17] H. A. Tajmir-Riahi, (2006) An overview of protein- DNA and protein-RNA interactions, J. of the Iranian Chem. Soc., 3, 297–304.
[18] Y. Zhou and Y. Li, (2004) Studies of interaction between poly (allylamine hydrochloride) and double helix DNA by spectral methods, Biophysical Chemistry, 107, 273–281.
[19] L. S. Andréa and O. A. S. Maria, (2007) Electrodeposition of polypyrrole films on aluminum from tartrate aqueous solution, J. Braz. Chem. Soc., 18, 143–152.
[20] M. Omastová, J. Pionteck, and S. Koina, (1996) Preparation and characterization of electrically conductive polypropyl-ene/polypyrrole composites, Eur. Polym. J., 32, 681– 689.
[21] H. N. Cong, K. E. Abbassi, J. L. Gautier, and P. Chartier, (2005) Oxygen reduction on oxide/polypyrrole composite electrodes: effect of doping anions, Electrochimica Acta., 50, 136–1376.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.