β-cyclodextrin Covalently Functionalized Single-Walled Carbon Nanotubes: Synthesis, Characterization and a Sensitive Biosensor Platform
Yong Gao, Yu Cao, Guiling Song, Yiming Tang, Huaming Li
.
DOI: 10.4236/jbnb.2011.24055   PDF    HTML     5,627 Downloads   11,030 Views   Citations

Abstract

In this study, we presented the preparation of β-cyclodextrin (β-CD) covalently functionalized single-walled carbon nanotubes (SWCNTs) and its application in modifying the solid glass carbon electrode (GCE). Cyclic voltammetry (CV) method was employed to evaluate the performance of the modified GCE. Solubility experiment indicated the conjugation of SWCNTs and β-CD, SWCNTs-β-CD with 8 wt% β-CD content could be well dispersed in water. High-resolution transmission electron microscopy (HRTEM) demonstrated that the aggregated SWCNTs bundle were effectively exfoliated to small bundle, even individual tube. The β-CD component was grafted on the side walls as well as tips of SWCNTs, and the grafted β-CD component was not uniformly coated on the surface of SWCNTs. The CV measurements indicated the performance of the GCE modified by SWCNTs-β-CD was better than that of the GCE modified by the hybrid of SWCNTs/β-CD, where ascorbic acid (AA) and uric acid (UA) were selected as a prelimiltary substrate to evaluate it. The enhanced performance of the modified GCE should be ascribed to the integration of the excellent electrocatalytic property of SWCNTs with the inclusion ability of β-CD to analyte molecule.

Share and Cite:

Y. Gao, Y. Cao, G. Song, Y. Tang and H. Li, "β-cyclodextrin Covalently Functionalized Single-Walled Carbon Nanotubes: Synthesis, Characterization and a Sensitive Biosensor Platform," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 4, 2011, pp. 454-460. doi: 10.4236/jbnb.2011.24055.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature,Vol. 354, 1991, pp. 56-58.
[2] M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes”, Nature, Vol. 381, 1996, pp. 678- 680.
[3] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, “Atomic structure and electronic properties of single- walled carbon nanotubes”, Nature, Vol. 391, 1998, pp. 62-64.
[4] N. Ferrer-Anglada, V. Gomis, Z. EI-Hachemi, U. Dettlaff Weglikovska,M. Kaempgen and S. Roth, “Carbon nanotube based composites for electronic applications: CNT- conducting polymers, CNT-Cu”, Phys. Status Solidi A, Vol. 203, No. 6, 2006, pp. 1082-1087.
[5] V. Bliznyuk, S. Singamaneni, R. Kattumenu and M. Atashbar, “Surface electrical conductivity in ultrathin single-wall carbon nanotube/polymer nanocomposite films”, Appl. Phys. Lett. Vol. 88, No. 16, 2006, pp. 164101-164103.
[6] E. Itoh, I. Suzuki, K. Miyairi, “Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices”, Jpn. Appl. Phys., Vol. 44, 2005, pp. 636-640.
[7] D. H. Zhang, M. A. Kandadai, J. Cech and S. A. Curran, “Poly(l-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility Evaluation” J. Phys. Chem. B, Vol. 110, No.26, 2006, pp. 12910-12915.
[8] A. Thess, R. Lee, P. Nikolaev et al, “Crystalline ropes of metallic carbon nanotubes”, Science, Vol. 273, 1996, pp. 483-487.
[9] C. Journet, W. K. Maser, P. Bernier et al, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique” Nature, Vol. 388, 997, pp. 756-758.
[10] B. R. Priya, H. J. Byrne, “Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes”, J. Phys. Chem. C, Vol. 112, No. 2, 2008, pp. 332-337.
[11] H. Murakami, T. Nomura and N. Nakashima, “Noncovalent porphyrin-functionalized single-walled carbon nano- tubes in solution and the formation of porphyrin–nano- tube nanocomposites”, Chem. Phys. Lett., Vol. 378, No. 5-6, 2003, pp. 481-485.
[12] H. Kong, C. Gao and D. Yan, “Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization”, J. Am. Chem. Soc., Vol. 126, No. 2, 2004, pp 412-413.
[13] T. Morishita, M. Matsushita, Y. Katagiri and K. Fukumori, “Synthesis and properties of macromer-grafted polymers for noncovalent functionalization of multiwalled carbon nanotubes”, Carbon, Vol. 47, No. 11, 2009, pp. 2716-2726.
[14] Y. Zhang, H. K. He, C. Gao, J. Y. Wu, “Covalent layer- by-layer functionalization of multiwalled carbon nanotubes by click chemistry”, Langmuir, Vol. 25, No. 10, 2009, pp. 5814-5824.
[15] M. Yang, Y. Gao, H. Li and A. Adronov, “Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization” Carbon, Vol. 45, No. 12, 2007, pp. 2327-2333.
[16] Y. Gao, G. Song, A. Alex and H. M. Li, “Functionalization of single-walled carbon nanotubes with poly(methyl methacrylate) by emulsion polymerization”, J. Phys. Chem. C, Vol. 114, No. 39, 2010, pp. 16242-16249.
[17] Z. Guo, L. Liang, J. J. Liang et al, “Covalently β-cyclodextrin modified single-walled carbon nanotubes: a novel artificial receptor synthesized by ‘click’ chemistry”, J. Nanopart. Res., Vol. 10, No. 6, 2008, pp. 1077-1083.
[18] G. Neelgund, A. Oki, “Pd nanoparticles deposited on poly(lactic acid) grafted carbon nanotubes: Synthesis, characterization and application in Heck C–C coupling reaction”, Applied Catalysis A: General, Vol. 399, No.1-2, 2011, pp.154-160.
[19] D. Pantarotto, C. D. Partidos, J. Hoebeke et al, “Immunization with peptide-functionalized carbon nanotubes enhances virusspecific neutralizing antibody responses”, Chem. Biol., Vol. 10, No. 10, 2003, pp. 961-966.
[20] K. Shi, T. C. Jessop, P. A. Wender, H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells”, J. Am. Chem. Soc., Vol. 126, No. 22, 2004, pp. 6850-6851.
[21] D. Pantarotto, R. Singh, D. McCarthy et al, “Functionalised carbon nanotubes for plasmid DNA gene delivery”, Angew. Chem., Vol. 116, No. 39, 2004, pp.5354-5358.
[22] K. Nikolaos, P. Rigini M, S. Argiris et al, “Peptidomimetic-functionalized carbon nanotubes with antitrypsin activity”, Carbon, Vol. 4 7, No. 15, 2009, pp.3550-3558.
[23] T. Loftsson, M. E. Brewster, “Pharmaceutical applications of cyclodextrins.1. Drug solubilization and stabilization”, J. Pharm. Sci., Vol. 85, No. 10, 1996, pp. 1017-1025
[24] R. A. Rajewskix, V. J. Stella, “Pharmaceutical applications of cyclodextrins 2. in vivo drug delivery”, J. Pharm. Sci., Vol. 85, No. 11, 1996, pp. 1142-1169
[25] Y. Liu, Y. Chen, “Cooperative binding and multiple recognition by bridged bis(b-cyclodextrin)s with functional linkers”, Acc. Chem. Res., Vol. 39, No. 10, 2006, pp. 681-691.
[26] R. Villalonga, R. Cao, A. Fragoso, “Supramolecular che- mistry of cyclodextrins in enzyme technology”, Chem. Rev., Vol. 107, No. 7, 2007, pp. 3088-3116.
[27] Y. Chen, Y. Liu, “Cyclodextrin-based bioactive supramolecular assemblies”, Chem. Soc. Rev., Vol. 39, 2010, pp. 495-505.
[28] S. A. Nepogodiev, J. F. Stoddart, “Cyclodextrin-based catenanes and rotaxanes”, Chem. Rev., Vol. 98, No. 5, 1998, pp. 1959-1976.
[29] A. Harada, “Cyclodextrin-based molecular machines”, Acc. Chem. Res., Vol. 34, No. 6, 2001, pp. 456-464.
[30] G. Wenz, B. H. Han, A. Müller, “Cyclodextrin rotaxanes and polyrotaxanes”, Chem. Rev., Vol. 106, No. 3, 2006, pp. 782-817.
[31] H. Tian, Q. C. Wang, “Recent progress on switchable rotaxanes”, Chem. Soc. Rev., Vol. 35, 2006, pp. 361-374.
[32] A. Harada, Y. Takashima, H. Yamaguchi, “Cyclodextrin-based supramolecular polymers”, Chem. Soc. Rev., Vol. 38, 2009, pp. 875-882.
[33] K. Michael, R. Helmut, “Supramolecular gels based on multi-walled carbon nanotubes bearing covalently attached cyclodextrin and water-soluble guest polymers”, Macromol. Rapid Commun. Vol. 29, No. 14, 2008, pp. 1208-1211.
[34] S. Kang, Z. Cui, L. Liu et al, “Sensitizing effect of oxazine on the photoluminescence of cyclodextrin-modified carbon nanotubes”, Journal of Dispersion Science and Technology, Vol. 27, 2006, pp. 45-47.
[35] Q. Jiang, H. Zhang, Y. liu, “Solvent-controlled photoinduced electron transfer between porphyrin and carbon nanotubes”, J. Org. Chem. Vol. 73, No 6. 2008, pp. 2163-2168.
[36] P. Liang, H.Y. Zhang, Z. L. Yu, Y. Liu, “Preparation and characterization of soluble methyl-b-cyclodextrin functionalized single-walled carbon nanotubes”, Physica. E, Vol. 40, No. 3, 2008, pp. 689-692.
[37] Y. Yang, C. Tsui, C.Tang et al, “Functionalization of car- bon nanotubes with biodegradable supramolecular polypseudorotaxanes from grafted-poly(ε-caprolactone) and α-cyclodextrins”, Europ. Polym. J., Vol. 46, No. 2, 2010, pp.145-155.
[38] R.C. Petter, J. S. Salek, C. T. Sikorski, R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, and F. T. Lin, “Cooperative binding by aggregated mono-6-(alky1amino)- β-cyclodextrins” J. Am. Chem. Soc. Vol. 112, No. 10, 1990, pp. 3860-3868.
[39] Y.Y. Liu, X.D. Fan, L. Gao, “Synthesis and Characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide”, Macromol. Biosci. Vol .3, No. 12, 2003, pp. 715-719.
[40] J. Liu, A. G. Rinzler, H. Dai et al, “Fullerene pipes”, Science, Vol. 280, No. 5367, 1998, pp. 1253-1256.
[41] M. C. Rodriguez, J. Sandoval, L. Galicia, S. Gutierrez and G. A. Rivas, “Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine”, Sens. Actuators B, Vol. 134, No. 2, 2008, pp. 559-565.
[42] Y.X. Li, X.Q. Lin, “Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode”, Sens. Actuators B, Vol. 115, No. 1, 2006, pp. 134-139.
[43] S.G. Wu, T.L. Wang, Z.Y., H. H. Xu, B. N. Zhou and C. Wang, “Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclo- dextrin modified copolymer of sulfanilic acid and N-ace- tylaniline”, Biosens. Bioelectron., Vol. 23, No. 12, 2008, pp. 1776-1780.
[44] L.Z. Zheng, S.G. Wu, X.Q. Lin, L. Nie and L. Rui, “Se- lective Determination of Uric Acid by Using a β-Cyclo- dextrin Modified Electrode”, Electroanalysis, Vol. 13, No. 16, 2001, pp. 1351-1354.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.