Responses of Transgenic Tobacco Plants with Increased Proline Content to Drought and/or Heat Stress
Jana Pospisilova, Daniel Haisel, Radomira Vankova
.
DOI: 10.4236/ajps.2011.23036   PDF    HTML     5,380 Downloads   11,631 Views   Citations

Abstract

Transgenic tobacco plants (M51-1) constitutively over-expressing a modified gene for the proline biosynthetic enzyme △2-pyrroline-5-carboxylate synthetase (P5CSF129A) and the corresponding wild-type plants (WT) were compared during drought or heat stress and under combination of both stresses. The proline content in M51-1 was several times higher than in WT plants. Under optimal conditions, the transpiration rate and stomatal conductance of M51-1 plants were lower than those in WT plants. The differences in net photosynthetic rate were not significant and water use efficiency and contents of chlorophyll and xanthophyll cycle pigments were higher in M51-1 than in WT plants. Drought induced by cessation of watering for 7 d resulted in decrease of all gas exchange parameters and chlorophyll content, but in an increase of the content of xanthophyll cycle pigments and degree of their de-epoxidation. After application of heat stress (40°C/60 min) to control or water-stressed plants the gas exchange parameters decreased considerably. Short-term heat stress alone, however, did not affect pigment contents. The responses of M51-1 and WT plants to the tested stresses did not differ significantly. Therefore, a decisive contribution of elevated proline content to drought or heat stress tolerance of tobacco was not proved.

Share and Cite:

Pospisilova, J. , Haisel, D. and Vankova, R. (2011) Responses of Transgenic Tobacco Plants with Increased Proline Content to Drought and/or Heat Stress. American Journal of Plant Sciences, 2, 318-324. doi: 10.4236/ajps.2011.23036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Ogawa and A. Yamauchi, “Root Osmotic Adjustment under Osmotic Stress in Maize Seedlings. 2. Mode of Accumulation of Several Solutes for Osmotic Adustment in the Root,” Plant Production Sciences, Vol. 9, No. 1, 2006, pp. 39-46. doi:10.1626/pps.9.39
[2] D. J. Walker, P. Romero and E. Correal, “Cold Tolerance, Water Relations and Accumulation of Osmolytes in Bituminaria bituminosa,” Biologia Plantarum, Vol. 54, No. 2, 2010, pp. 293-298. doi:10.1007/s10535-010-0051-x
[3] B. Heuer, “Osmoregulatory Role of Proline in Plants Ex- posed to Environmental Stresses,” In: M. Pessarakli, Ed., Handbook of Plant and Crop Stress, 2nd Edition, Marcel Dekker, New York, 1999, pp. 675-695.
[4] L. Szabados and A, Savouré, “Proline: A Multifunctional Amino Acid,” Trends in Plant Science, Vol. 15, No. 2, 2010, pp. 89-97. doi:10.1016/j.tplants.2009.11.009
[5] P. D. Hare, W. A. Cress, “Metabolic Implications of Stress- Induced Proline Accumulation in Plants,” Plant Growth Regulation, Vol. 21, No. 2, 1997, pp. 79-102. doi:10.1023/A:1005703923347
[6] M. Thippeswamy, P. Chandraobulreddy, B. Sinilal, M. Shiva Kumar and Chinta Sudhakar, “Proline Accumulation and the Expression of ?1-Pyrroline-5-Carboxylate Synthetase in Two Safflower Cultivars,” Biologia Plantarum, Vol. 54, No. 2, 2010, pp. 386-390. doi:10.1007/s10535-010-0070-7
[7] P. B. Kavi Kishor, S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, K. R. S. S. Rao, S. Rao, K. J. Reddy, P. Theriappan, N. Sreenivasulu, “Regulation of Proline Biosynthesis, Degradation, Uptake and Transport in Higher Plants: Its Implications in Plant Growth and Abiotic Stress Tolerance,” Current Science, Vol. 88, No. 3, 2005, pp. 424-438.
[8] Y. Jung, J. Park, Y. Choi, J.-G. Yang, D. Kim, B.-G. Kim, K. Roh, D.-H. Lee, C.-K. Auh and S. Lee, “Expression Analysis of Proline-Metabolism Genes from Halophyte Arabis stelleri under Osmotic Stress Conditions,” Journal of Integrative Plant Biology, Vol. 52, No. 10, 2010, pp. 891-903. doi:10.1111/j.1744-7909.2010.00990.x
[9] G. Miller, H. Stein, A. Honig,, Y. Kapulnik, Y. and A. Zilberstein, “Responsive Modes of Medicago sativa Proline Dehydrogenase Genes during Salt Stress and Recovery Dictate Free Proline Accumulation,” Planta, Vol. 222, No. 1, 2005, pp. 70-79.
[10] C. O. Silva-Ortega, A. E. Ochoa-Alfaro, J. A. Reyes- Agüero, G. A. Aguado-Santacruz and J. F. Jiménez-Bre- mont, “Salt Stress Increases the Expression of P5CS Gene and Induces Proline Accumulation in Cactus Pear,” Plant Physiology and Biochemistry, Vol. 46, No. 1, 2008, pp. 82-92. doi:10.1016/j.plaphy.2007.10.011
[11] G. Szekely, E. Abraham, A. Cselo, G. Rigo, L. Zsigmond, J. Csiszar, F. Ayaydin, N. Strizhov, J. Jasik, E. Schmelzer, C. Koncz and L. Szabados, “Duplicated P5CS Genes of Arabidopsis Play Distinct Roles in Stress Regulation and Developmental Control of Proline Biosynthesis,” Plant Journal, Vol. 53, No. 1, 2008, pp. 11-28. doi:10.1111/j.1365-313X.2007.03318.x
[12] M. Ashraf and M. R. Foodlad, “Roles of Glycine betaine and proline in Improving Plant Abiotic Stress Resistance,” Environmental and Experimental Botany, Vol. 59, 2007, pp. 206-216. doi:10.1016/j.envexpbot.2005.12.006
[13] S. Lutts, J. M. Kinet and J. Bouharmont, “Effects of Salt Stress on Growth, Mineral Nutrition and Proline Accumulation in Relation to Osmotic Adjustment in Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance,” Plant Growth Regulation, Vol. 19, No. 2, 1996, pp. 207-218. doi:10.1007/BF00037793
[14] J. Gubis, R. Vankova, V. Cervena, M. Dragounova, M. Hudcovicova, H. Lichtnerovia, T. Dokoupil and Z. Jurekova, “Transformed Tobacco Plants with Increased Tolerance to Drought,” South African Journal of Botany, Vol. 73. No. 4, 2007, pp. 505-511.
[15] J. Dobra, V. Motyka, P. Dobrev, J. Malbeck, I. T. Prasil, D. Haisel, A. Gaudinova, M. Havlova, J. Gubis and R. Vankova, “Comparison of Hormonal Responses to Heat, Drought and Combined Stress in Tobacco Plants with Elevated Proline Content,” Journal of Plant Physiology, Vol. 167, No. 16, 2010, pp. 1360-1370. doi:10.1016/j.jplph.2010.05.013
[16] P. B. Kavi Kishor, Z. Hong, G.-H. Miao, C. A. Hu and D. P. S. Verma, “Overexpression of ?1-Pyrroline-5-Carboxylase Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants,” Plant Physiology, Vol. 108, No. 4, 1995, pp. 1387-1394.
[17] R. Dibax, C. Deschamps, J.C. Bespakhok Filho, L. G. E. Vieira, H. B. C. Milinari, M. K. F. De Campos and M. Quorin, “Organogenesis and Agrobacterium tumefaciens- Mediated Transformation of Eucalyptus saligna with P5CS Gene,” Biologia Plantarum, Vol. 54, No. 1, 2010, pp. 6-12. doi:10.1007/s10535-010-0002-6
[18] V. Kumar, V. Shriram, P. B. Kavi Kishor, N. Jawali and M. G. Shitole, “Enhanced Proline Accumulation and Salt Stress Tolerance of Transgenic Indica Rice by Over-Expressing P5CSF129A Gene,” Plant Biotechnology Reports, Vol. 4, No. 1, 2010, pp. 37-48.
[19] T. Nanjo, M. Kobayashi, Y. Yoshiba, Y. Sanada, K. Wada, H. Tsukaya, Y. Kakubari, K. Yamaguchi-Shino- zaki and K. Shinozaki, “Biological Functions of Proline in Morphogenesis and Osmotolerance Revealed in Antisense Transgenic Arabidopsis,” The Plant Journal, Vol. 18, No. 2, 1999, pp. 185-193. doi:10.1046/j.1365-313X.1999.00438.x
[20] H. B. C. Molinari, C. J. Marur, E. Daros, M. K. Freitas de Campos, J. F. R. Portela de Carvalho, J. C. B. Filho, L. F. P. Pereira and E. L. G. Vieira, “Evaluation of the Stress- Inducible Production of Proline in Transgenic Sugarcane (Saccharum spp.): Osmotic Adjustment, Chlorophyll Fluorescence and Oxidative Stress,” Physiologia Plantarum, Vol. 130, No. 2, 2007, pp. 218-229. doi:10.1111/j.1399-3054.2007.00909.x
[21] E. C. G. Vendruscolo, I. Schuster, M. Pileggi, C. A. Scapim, H. B. C. Molinari, C. J. Marur and E. L. G. Vieira, “Stress-Induced Synthesis of Proline Confers Tolerance to Water deficit in Transgenic Wheat,” Journal of Plant Physiology, Vol. 164, No. 10, 2007, 1367-1376. doi:10.1016/j.jplph.2007.05.001
[22] P. Bhatnagar-Mathur, V. Vadez, M. J. Devi, M. Lavanya, G. Vani and K. K. Sharma, “Genetic Engineering of Chickpea (Cicer arietinum L.) with the P5CSF129A Gene for Osmoregulation with Implications on Drought Tolerance,” Molecular Breeding, Vol. 23, No. 4, 2009, pp. 591-606. doi:10.1007/s11032-009-9258-y
[23] J. A. De Ronde, W. A. Cress, G. H. J. Kruger, R. J. Streasser, J. Van Staden, “Photosynthetic Response of Transgenic Soybean Plants, Containing an Arabidopsis P5CR Gene, during Heat and Drought Stress,” Journal of Plant Physiology, Vol. 161, No. 11, 2004, pp. 1211-1224. doi:10.1016/j.jplph.2004.01.014
[24] W. H. Hu, Y. A. Xiao, J. J. Zeng and X. H. Hu, “Photosynthesis, Respiration and Antioxidative Enzymes in Pepper Leaves under Drought and Heat Stresses,” Biologia Plantarum, Vol. 54, No. 4, 2010, 761-765.
[25] M. L. Osório, J. Osório, A. C. Vieira, S. Gon?alves and A. Romano, “Influence of Enhanced Temperature on Photosynthesis, Photooxidative Damage, and Antioxidant Strategies in Ceratonia siliqua L. Seedlings Subjected to Water Deficit and Rewatering,” Photosynthetica, Vol. 49, No. 1, 2011, 3-12.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.