Angiotensinogen Expression Is Enhanced in the Progression of Glomerular Disease
Maki Urushihara, Hiroyuki Kobori
.
DOI: 10.4236/ijcm.2011.24064   PDF    HTML   XML   5,823 Downloads   9,400 Views   Citations

Abstract

Intrarenal renin-angiotensin system (RAS) activation plays a critical role in the development and progression of renal injury. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by multiple independent mechanisms. Angiotensinogen (AGT) is the only known substrate for renin that is a rate-limiting enzyme of the RAS. Recently, enhanced intrarenal AGT levels have been shown to reflect the intrarenal RAS status in hypertension, chronic glomerular disease and diabetic nephropathy. In this review, we focus on AGT expression of the diseased glomeruli in the progression of glomerular disease. An anti-glomerular basement membrane nephritis rat model developed progressive proteinuria and glomerular crescent formation, accompanied by increased macrophage infiltration and glomerular expression of AGT and Ang II. The addition of Ang II type 1 receptor blocker to CC-chemokine recaptor 2 antagonist markedly attenuated the induction of macrophage infiltration, AGT and Ang II, and reduced glomerular crescent formation. Next, the levels of glomerular AGT expression and marker of reactive oxygen species in Zucker diabetic fatty (ZDF) obese rats were higher than those in ZDF lean rats. Hydrogen peroxide (H2O2) induced an increase in the AGT expression in primary rat mesangial cells. Furthermore, the H2O2-induced upregulation of AGT was inhibited by a mitogen-activated protein kinase kinase and a c-Jun N-terminal kinase inhibitor. These data suggest the potential contribution of enhanced AGT expression in glomeruli to the intrarenal RAS activation for the development of glomerular disease.

Share and Cite:

M. Urushihara and H. Kobori, "Angiotensinogen Expression Is Enhanced in the Progression of Glomerular Disease," International Journal of Clinical Medicine, Vol. 2 No. 4, 2011, pp. 378-387. doi: 10.4236/ijcm.2011.24064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Anderson, H. G. Rennke and B. M. Brenner, “Therapeutic Advantage of Converting Enzyme Inhibitors in Arresting Progressive Renal Disease Associated with Systemic Hypertension in the Rat,” Journal of Clinical Investigation, Vol. 77, No. 6, 1986, pp. 1993-2000. doi:10.1172/JCI112528
[2] L. G. Navar, L. M. Harrison-Bernard, J. D. Imig, et al., “Intrarenal Angiotensin II Generation and Renal Effects of AT1 Receptor Blockade,” Journal of the American Society of Nephrology, Vol. 10 No. S12, 1999, pp. S266-S272.
[3] H. Kobori, M. Nangaku, L. G. Navar and A. Nishiyama, “The Intrarenal Renin-Angiotensin System: From Physiology to the Pathobiology of Hypertension and Kidney Disease,” Pharmacological Reviews, Vol. 59, No. 3, 2007, pp. 251-287. doi:10.1124/pr.59.3.3
[4] V. J. Dzau and R. Re, “Tissue Angiotensin System in Cardiovascular Medicine. A Paradigm Shift?” Circulation, Vol. 89, No. 1, 1994, pp. 493-498.
[5] S. Kagami, W. A. Border, D. E. Miller and N. A. Noble, “Angiotensin II Stimulates Extracellular Matrix Protein Synthesis through Induction of Transforming Growth Factor-Beta Expression in Rat Glomerular Mesangial Cells,” Journal of Clinical Investigation, Vol. 93, No. 6, 1994, pp. 2431-2437. doi:10.1172/JCI117251
[6] M. Ruiz-Ortega and J. Egido, “Angiotensin II Modulates Cell Growth-Related Events and Synthesis of Matrix Proteins in Renal Interstitial Fibroblasts,” Kidney International, Vol. 52, No. 6, 1997, pp. 1497-1510. doi:10.1038/ki.1997.480
[7] Y. Horita, M. Tadokoro, K. Taura, et al., “Low-Dose Combination Therapy with Temocapril and Losartan Reduces Proteinuria in Normotensive Patients with Immunoglobulin a Nephropathy,” Hypertension Research, Vol. 27, No. 12, 2004, pp. 963-970. doi:10.1291/hypres.27.963
[8] M. Ravid, D. Brosh, Z. Levi, et al., “Use of Enalapril to Attenuate Decline in Renal Function in Normotensive, Normoalbuminuric Patients with Type 2 Diabetes Mellitus. A Randomized, Controlled Trial,” Annals of Internal Medicine, Vol. 128, No. 12, 1998, pp. 982-988.
[9] NIDDK, “Glomerular Diseases,” NIH Publication, Bethesda, 2006.
[10] A. B. Fogo, “The Role of Angiotensin II and Plasminogen Activator Inhibitor-1 in Progressive Glomerulosclerosis,” American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, Vol. 35, No. 2, 2000, pp. 179-188.
[11] U. C. Brewster and M. A. Perazella, “The Renin-Angio- Tensin-Aldosterone System and the Kidney: Effects on Kidney Disease,” American Journal of Medicine, Vol. 116, No. 4, 2004, pp. 263-272. doi:10.1016/j.amjmed.2003.09.034
[12] C. Ruster and G. Wolf, “Renin-Angiotensin-Aldosterone System and Progression of Renal Disease,” Journal of the American Society of Nephrology, Vol. 17, No. 11, 2006, pp. 2985-2991. doi:10.1681/ASN.2006040356
[13] G. Wolf, “Renal Injury Due to Renin-Angiotensin-Aldosterone System Activation of the Transforming Growth Factor-Beta Pathway,” Kidney International, Vol. 70, No. 11, 2006, pp. 1914-1919.
[14] R. M. Carey and H. M. Siragy, “The Intrarenal Renin- Angiotensin System and Diabetic Nephropathy,” Trends Endocrinol Metab, Vol. 14, No. 6, 2003, pp. 274-281. doi:10.1016/S1043-2760(03)00111-5
[15] R. A. Santos, A. C. Simoes e Silva, C. Maric, et al., “Angiotensin-(1-7) is an Endogenous Ligand for the G Protein-Coupled Receptor Mas,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 14, 2003, pp. 8258-8263. doi:10.1073/pnas.1432869100
[16] O. Baltatu, J. A. Silva, Jr., D. Ganten and M. Bader, “The Brain Renin-Angiotensin System Modulates Angiotensin II-Induced Hypertension and Cardiac Hypertrophy,” Hypertension, Vol. 35, No. 1, 2000, pp. 409-412.
[17] L. J. Dell’Italia, Q. C. Meng, E. Balcells, et al., “Compartmentalization of Angiotensin II Generation in the Dog Heart. Evidence for Independent Mechanisms in Intravascular and Interstitial Spaces,” Journal of Clinical Investigation, Vol. 100, No. 2, 1997, pp. 253-258.
[18] G. Mazzocchi, L. K. Malendowicz, A. Markowska, et al., “Role of Adrenal Renin-Angiotensin System in the Control of Aldosterone Secretion in Sodium-Restricted Rats,” American Journal of Physiology, Endocrinology and Metabolism, Vol. 278, No. 6, 2000, pp. E1027-1030.
[19] K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw and R. W. Alexander, “Angiotensin II Stimulates NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells,” Circulation Research, Vol. 74, No. 6, 1994, pp. 1141-1148.
[20] L. G. Navar, L. M. Harrison-Bernard, A. Nishiyama and H. Kobori, “Regulation of Intrarenal Angiotensin II in Hypertension,” Hypertension, Vol. 39, No. 2, 2002, pp. 316-322.
[21] L. G. Navar, M. C. Prieto-Carrasquero and H. Kobori, “Chapter 1: Molecular Aspects of the Renal Renin-An- giotensin System,” 1st Edition, Taylor & Francis Medical, Oxfordshine, 2006, pp. 3-14.
[22] J. R. Ingelfinger, W. M. Zuo, E. A. Fon, et al., “In Situ Hybridization Evidence for Angiotensinogen Messenger RNA in the Rat Proximal Tubule. An Hypothesis for the Intrarenal Renin Angiotensin System,” Journal of Clinical Investigation, Vol. 85, No. 2, 1990, pp. 417-423. doi:10.1172/JCI114454
[23] Y. Terada, K. Tomita, H. Nonoguchi and F. Marumo, “PCR Localization of Angiotensin II Receptor and Angiotensinogen mRNAs in Rat Kidney,” Kidney International ernational, Vol. 43, No. 6, 1993, pp. 1251-1259. doi:10.1038/ki.1993.177
[24] J. P. Richoux, J. L. Cordonnier, J. Bouhnik, et al., “Immunocytochemical Localization of Angiotensinogen in Rat Liver and Kidney,” Cell and Tissue Research, Vol. 233, No. 2, 1983, pp. 439-451. doi:10.1007/BF00238309
[25] I. A. Darby and C. Sernia, “In Situ Hybridization and Immunohistochemistry of Renal Angiotensinogen in Neonatal and Adult Rat Kidneys,” Cell and Tissue Research, Vol. 281, No. 2, 1995, pp. 197-206. doi:10.1007/BF00583388
[26] H. Kobori, L. M. Harrison-Bernard and L. G. Navar, “Expression of Angiotensinogen mRNA and Protein in Angiotensin II-Dependent Hypertension,” Journal of the American Society of Nephrology, Vol. 12, No. 3, 2001, pp. 431-439.
[27] P. P. Leyssac, “Changes in Single Nephron Renin Release Are Mediated by Tubular Fluid Flow Rate,” Kidney In- ternational ernational, Vol. 30, No. 3, 1986, pp. 332-339. doi:10.1038/ki.1986.189
[28] N. Yanagawa, A. W. Capparelli, O. D. Jo, et al., “Production of Angiotensinogen and Renin-Like Activity by Rabbit Proximal Tubular Cells in Culture,” Kidney International, Vol. 39, No. 5, 1991, pp. 938-941. doi:10.1038/ki.1991.117
[29] W. L. Henrich, E. A. McAllister, A. Eskue, et al., “Renin Regulation in Cultured Proximal Tubular Cells,” Hypertension, Vol. 27, No. 6, 1996, pp. 1337-1340.
[30] O. W. Moe, K. Ujiie, R. A. Star, et al., “Renin Expression in Renal Proximal Tubule,” Journal of Clinical Investigation, Vol. 91, No. 3, 1993, pp. 774-779. doi:10.1172/JCI116296
[31] M. Sibony, J. M. Gasc, F. Soubrier, et al., “Gene Expression and Tissue Localization of the Two Isoforms of Angiotensin I Converting Enzyme,” Hypertension, Vol. 21, No. 6, 1993, pp. 827-835.
[32] W. W. Schulz, H. K. Hagler, L. M. Buja and E. G. Erdos, “Ultrastructural Localization of Angiotensin I-Converting Enzyme (EC 3.4.15.1) and Neutral Metalloendopeptidase (EC 3.4.24.11) in the Proximal Tubule of the Human Kidney,” Laboratory Investigation, Vol. 59, No. 6, 1988, pp. 789-797.
[33] C. P. Vio and V. A. Jeanneret, “Local Induction of Angiotensin-Converting Enzyme in the Kidney as a Mechanism of Progressive Renal Diseases,” Kidney International, No. 86, 2003, pp. S57-63.
[34] D. E. Casarini, M. A. Boim, R. C. Stella, et al., “Angiotensin I-Converting Enzyme Activity in Tubular Fluid along the Rat Nephron,” American Journal of Physiology, Heart and Circulatory Physiology, Vol. 272, No. 3, 1997, pp. F405-409.
[35] A. B. Gould and D. Green, “Kinetics of the Human Renin and Human Substrate Reaction,” Cardiovascular Research, Vol. 5, No. 1, 1971, pp. 86-89. doi:10.1093/cvr/5.1.86
[36] A. R. Brasier and J. Li, “Mechanisms for Inducible Control of Angiotensinogen Gene Transcription,” Hypertension, Vol. 27, No. 3 Pt 2, 1996, pp. 465-475.
[37] Y. Ding, R. L. Davisson, D. O. Hardy, et al., “The Kidney Androgen-Regulated Protein Promoter Confers Renal Proximal Tubule Cell-Specific and Highly Androgen-Re- Sponsive Expression on the Human Angiotensinogen Gene in Transgenic Mice,” The Journal of Biological Chemistry, Vol. 272, No. 44, 1997, pp. 28142-28148. doi:10.1074/jbc.272.44.28142
[38] S. Kimura, J. J. Mullins, B. Bunnemann, et al., “High Blood Pressure in Transgenic Mice Carrying the Rat Angiotensinogen Gene,” EMBO Journal, Vol. 11, No. 3, 1992, pp. 821-827.
[39] A. Fukamizu, K. Sugimura, E. Takimoto, et al., “Chi- meric Renin-Angiotensin System Demonstrates Sustained Increase in Blood Pressure of Transgenic Mice Carrying Both Human Renin and Human Angiotensinogen Genes,” The Journal of Biological Chemistry, Vol. 268, No. 16, 1993, pp. 11617-11621.
[40] J. Bohlender, J. Menard, D. Ganten and F. C. Luft, “An- giotensinogen Concentrations and Renin Clearance: Im- plications for Blood Pressure Regulation,” Hypertension, Vol. 35, No. 3, 2000, pp. 780-786.
[41] O. Smithies, “Theodore Cooper Memorial Lecture. A Mouse View of Hypertension,” Hypertension, Vol. 30, No. 6, 1997, pp. 1318-1324.
[42] D. C. Merrill, M. W. Thompson, C. L. Carney, et al., “Chronic Hypertension and Altered Baroreflex Responses in Transgenic Mice Containing the human Renin and Human Angiotensinogen Genes,” Journal of Clinical Investigation, Vol. 97, No. 4, 1996, pp. 1047-1055. doi:10.1172/JCI118497
[43] H. Kobori, Y. Ozawa, R. Satou, et al., “Kidney-Specific Enhancement of ANG II Stimulates Endogenous Intrarenal Angiotensinogen in Gene-Targeted Mice,” American Journal of Physiology, Vol. 293, No. 3, 2007, pp. F938-945. doi:10.1152/ajprenal.00146.2007
[44] S. Sachetelli, Q. Liu, S. L. Zhang, et al., “RAS Blockade Decreases Blood Pressure and Proteinuria in Transgenic Mice Overexpressing Rat Angiotensinogen Gene in the Kidney,” Kidney International, Vol. 69, No. 6, 2006, pp. 1016-1023. doi:10.1038/sj.ki.5000210
[45] J. L. Lavoie, K. D. Lake-Bruse and C. D. Sigmund, “Increased Blood Pressure in Transgenic Mice Expressing Both Human Renin and Angiotensinogen in the renal Proximal Tubule,” American Journal of Physiology, Vol. 286, No. 5, 2004, pp. F965-971. doi:10.1152/ajprenal.00402.2003
[46] O. Smithies and H.S. Kim, “Targeted Gene Duplication and Disruption for Analyzing Quantitative Genetic Traits in Mice,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 91, No. 9, 1994, pp. 3612-3615. doi:10.1073/pnas.91.9.3612
[47] H. S. Kim, J. H. Krege, K. D. Kluckman, et al., “Genetic Control of Blood Pressure and The Angiotensinogen Locus,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, No. 7, 1995, pp. 2735-2739. doi:10.1073/pnas.92.7.2735
[48] I. Inoue, T. Nakajima, C. S. Williams, et al., “A Nucleotide Substitution in the Promoter of Human Angiotensinogen is Associated with Essential Hypertension and Affects Basal Transcription in vitro,” Journal of Clinical Investigation, Vol. 99, No. 7, 1997, pp. 1786-1797.
[49] X. Jeunemaitre, F. Soubrier, Y. V. Kotelevtsev, et al., “Molecular Basis of Human Hypertension: Role of Angiotensinogen,” Cell, Vol. 71, No. 1, 1992, pp. 169-180.
[50] Y. Y. Zhao, J. Zhou, C. S. Narayanan, et al., “Role of C/A Polymorphism at -20 on the Expression of Human Angiotensinogen Gene,” Hypertension, Vol. 33, No. 1, 1999, pp. 108-115.
[51] T. Ishigami, S. Umemura, K. Tamura, et al., “Essential Hypertension and 5’ Upstream Core Promoter Region of Human Angiotensinogen Gene,” Hypertension, Vol. 30, No. 6, 1997, pp. 1325-1330.
[52] H. Kobori, L. M. Harrison-Bernard and L. G. Navar, “Enhancement of Angiotensinogen Expression in Angiotensin II-Dependent Hypertension,” Hypertension, Vol. 37, No. 5, 2001, pp. 1329-1335.
[53] H. Kobori, L. M. Harrison-Bernard and L. G. Navar, “Urinary Excretion of Angiotensinogen Reflects Intrarenal Angiotensinogen Production,” Kidney International, Vol. 61, No. 2, 2002, pp. 579-585. doi:10.1046/j.1523-1755.2002.00155.x
[54] H. Kobori, A. Nishiyama, L.M. Harrison-Bernard and L. G. Navar, “Urinary Angiotensinogen As an Indicator of Intrarenal Angiotensin Status in Hypertension,” Hypertension, Vol. 41, No. 1, 2003, pp. 42-49.
[55] H. Kobori, M. C. Prieto-Carrasquero, Y. Ozawa and L. G. Navar, “AT1 Receptor Mediated Augmentation of Intra- renal Angiotensinogen in Angiotensin II-Dependent Hypertension,” Hypertension, Vol. 43, No. 5, 2004, pp. 1126-1132.
[56] H. Schunkert, J. R. Ingelfinger, H. Jacob, et al., “Reciprocal Feedback Regulation of Kidney Angiotensinogen and Renin mRNA Expressions by Angiotensin II,” American Journal of Physiology, Vol. 263, No. 5, 1992, pp. E863-869.
[57] H. Kobori and A. Nishiyama, “Effects of Tempol on Renal Angiotensinogen Production in Dahl Salt-Sensitive Rats,” Biochemical and Biophysical Research Communications, Vol. 315, No. 3, 2004, pp. 746-750. doi:10.1016/j.bbrc.2004.01.120
[58] H. Kobori, A. Nishiyama, Y. Abe and L.G. Navar, “Enhancement of Intrarenal Angiotensinogen in Dahl Salt- Sensitive Rats on High Salt Diet,” Hypertension, Vol. 41, No. 3, 2003, pp. 592-597.
[59] H. Kobori, Y. Ozawa, Y. Suzaki and A. Nishiyama, “Enhanced Intrarenal Angiotensinogen Contributes to Early Renal Injury in Spontaneously Hypertensive Rats,” Journal of the American Society of Nephrology, Vol. 16, No. 7, 2005, pp. 2073-2080. doi:10.1681/ASN.2004080676
[60] S. Anderson, F. F. Jung and J. R. Ingelfinger, “Renal Renin-Angiotensin System in Diabetes: Functional, Immunohistochemical, and Molecular Biological Correlations,” American Journal of Physiology, Vol. 265, No. 4, 1993, pp. F477-486.
[61] Y. Nagai, L. Yao, H. Kobori, et al., “Temporary Angiotensin II Blockade at the Prediabetic Stage Attenuates the Development of Renal Injury In Type 2 Diabetic Rats,” Journal of the American Society of Nephrology, Vol. 16, No. 3, 2005, pp. 703-711. doi:10.1681/ASN.2004080649
[62] R. Singh, A. K. Singh and D. J. Leehey, “A Novel Mechanism for Angiotensin II Formation in Streptozotocin-Diabetic Rat Glomeruli,” American Journal of Physiology—Renal Physiology, Vol. 288, No. 6, 2005, pp. F1183-1190. doi:10.1152/ajprenal.00159.2003
[63] R. Singh, A. K. Singh and D. J. Leehey, “A Novel Mechanism for Angiotensin II Formation in Streptozotocin-Diabetic Rat Glomeruli,” American Journal of Physiology—Renal Physiology, Vol. 288, No. 6, 2005, pp. F1183-1190. doi:10.1152/ajprenal.00159.2003
[64] K. Miyata, N. Ohashi, Y. Suzaki, et al., “Sequential Activation of the Reactive Oxygen Species/ Angiotensinogen/ Renin-Angiotensin System Axis in Renal Injury of Type 2 Diabetic Rats,” Clinical and Experimental Pharmacology and Physiology, Vol. 35, No. 8, 2008, pp. 922- 927. doi:10.1111/j.1440-1681.2008.04938.x
[65] D. J. Leehey, A. K. Singh, J. P. Bast, et al., “Glomerular Renin Angiotensin System in Streptozotocin Diabetic and Zucker Diabetic Fatty Rats,” Translational Research, Vol. 151, No. 4, 2008, pp. 208-216. doi:10.1016/j.trsl.2008.01.003
[66] H. Kobori, A. Katsurada, Y. Ozawa, et al., “Enhanced Intrarenal Oxidative Stress and Angiotensinogen in IgA Nephropathy Patients,” Biochemical and Biophysical Research Communications, Vol. 358, No. 1, 2007, pp. 156- 163. doi:10.1016/j.bbrc.2007.04.105
[67] M. Takamatsu, M. Urushihara, S. Kondo, et al., “Glomerular Angiotensinogen Protein is Enhanced in Pediatric IgA Nephropathy,” Pediatric Nephrology, Vol. 23, No. 8, 2008, pp. 1257-1267. doi:10.1007/s00467-008-0801-6
[68] H. Kobori, Y. Ozawa, Y. Suzaki, et al., “Young Scholars Award Lecture: Intratubular angiotensinogen in Hypertension and Kidney Diseases,” American Journal of Hypertension, Vol. 19, No. 5, 2006, pp. 541-550. doi:10.1016/j.amjhyper.2005.11.014
[69] A. Katsurada, Y. Hagiwara, K. Miyashita, et al., “Novel Sandwich ELISA for Human Angiotensinogen,” American Journal of Physiology—Renal Physiology, Vol. 293, No. 3, 2007, pp. F956-960. doi:10.1152/ajprenal.00090.2007
[70] H. Kobori, A. B. Alper, Jr., R. Shenava, et al., “Urinary Angiotensinogen as a Novel Biomarker of the Intrarenal Renin-Angiotensin System Status in Hypertensive Patients,” Hypertension, Vol. 53, No. 2, 2009, pp. 344-350.
[71] H. Kobori, M. Urushihara, J. H. Xu, et al., “Urinary Angiotensinogen Is Correlated with Blood Pressure in Men (Bogalusa Heart Study),” Hypertension, Vol. 28, No. 7, 2010, pp. 1422-1428. doi:10.1097/HJH.0b013e3283392673
[72] H. Kobori, N. Ohashi, A. Katsurada, et al., “Urinary Angiotensinogen as a Potential Biomarker of Severity of Chronic Kidney Diseases,” Journal of the American Society of Hypertension, Vol. 2, No. 5, 2008, pp. 349-354. doi:10.1016/j.jash.2008.04.008
[73] M. Urushihara, S. Kondo, S. Kagami, and H. Kobori, “Urinary angiotensinogen accurately reflects intrarenal Renin-Angiotensin system activity,” American Journal of Nephrology, Vol. 31, No. 4, 2010, pp. 318-325. doi:10.1159/000286037
[74] A. Nishiyama, Y. Konishi, N. Ohashi, et al., “Urinary Angiotensinogen Reflects the Activity of Intrarenal Renin-Angiotensin System in Patients with IgA Nephropathy,” Nephrology Dialysis Transplantation, Vol. 26, No. 1, 2011, pp. 170-177. doi:10.1093/ndt/gfq371
[75] H. R. Jang, S. M. Kim, Y. J. Lee, et al., “The Origin and the Clinical Significance of Urinary Angiotensinogen in Proteinuric IgA Nephropathy Patients,” Annals of Medicine, 2011, Ahead of Print.
[76] T. Saito, M. Urushihara, Y. Kotani, et al., “Increased urinary Angiotensinogen is Precedent to Increased Urinary Albumin in Patients with Type 1 Diabetes,” The American Journal of the Medical Sciences, Vol. 338, No. 6, 2009, pp. 478-480. doi:10.1097/MAJ.0b013e3181b90c25
[77] S. Ogawa, H. Kobori, N. Ohashi, et al., “Angiotensin II Type 1 Receptor Blockers Reduce Urinary Angiotensinogen Excretion and the Levels of Urinary Markers of Oxidative Stress and Inflammation in Patients with Type 2 Diabetic Nephropathy,” Journal of Biomarker Insights, Vol. 4, 2009, pp. 97-102.
[78] H. R. Brunner, “ACE Inhibitors in Renal Disease,” Kidney Internationa, Vol. 42, No. 2, 1992, pp. 463-479.
[79] D. E. Kohan, “Angiotensin II and Endothelin in Chronic Glomerulonephritis,” Kidney International, Vol. 54, No. 2, 1998, pp. 646-647. doi:10.1046/j.1523-1755.1998.00038.x
[80] R. A. Lafayette, G. Mayer, S. K. Park and T. W. Meyer, “Angiotensin II Receptor Blockade Limits Glomerular Injury in Rats with Reduced Renal Mass,” Journal of Clinical Investigation, Vol. 90, No. 3, 1992, pp. 766-771. doi:10.1172/JCI115949
[81] I. Giatras, J. Lau and A. S. Levey, “Effect of Angiotensin-Converting Enzyme Inhibitors on the Progression of Nondiabetic Renal Disease: A Meta-Analysis of Randomized trials. Angiotensin- Converting-Enzyme Inhibition and Progressive Renal Disease Study Group,” Annals of Internal Medicine, Vol. 127, No. 5, 1997, pp. 337-345.
[82] B. G. Hudson, K. Tryggvason, M. Sundaramoorthy and E.G. Neilson, “Alport’s Syndrome, Goodpasture’s Syndrome, and Type IV Collagen,” New England Journal of Medicine, Vol. 348, No. 25, 2003, pp. 2543-2556. doi:10.1056/NEJMra022296
[83] K. K. Jindal, “Management of Idiopathic Crescentic and Diffuse Proliferative Glomerulonephritis: Evidence- Based Recommendations,” Kidney International, Vol. 70, No., 1999, pp. S33-40.
[84] T. Wada, H. Yokoyama, K. Furuichi, et al., “Intervention of Crescentic Glomerulonephritis by Antibodies to Monocyte Chemotactic and Activating Factor (MCAF/ MCP-1),” FASEB Journal, Vol. 10, No. 12, 1996, pp. 1418-1425.
[85] T. Wada, K. Furuichi, N. Sakai, et al., “A New Anti-In- Flammatory Compound, FR167653, Ameliorates Crescentic Glomerulonephritis in Wistar-Kyoto Rats,” Journal of the American Society of Nephrology, Vol. 11, No. 8, 2000, pp. 1534-1541.
[86] H. Y. Lan, D. J. Nikolic-Paterson, M. Zarama, et al., “Suppression of Experimental Crescentic Glomerulonephritis by the interleukin-1 Receptor Antagonist,” Kidney International , Vol. 43, No. 2, 1993, pp. 479-485. doi:10.1038/ki.1993.70
[87] M. Le Hir, C. Haas, M. Marino and B. Ryffel, “Prevention of Crescentic Glomerulonephritis Induced by Anti- Glomerular Membrane Antibody in Tumor Necrosis Factor- Deficient Mice,” Laboratory Investigation, Vol. 78, No. 12, 1998, pp. 1625-1631.
[88] Y. Ozawa, H. Kobori, Y. Suzaki and L. G. Navar, “Sustained Renal Interstitial Macrophage Infiltration Following Chronic Angiotensin II Infusions,” American Journal of Physiology—Renal Physiology, Vol. 292, No. 1, 2007, pp. F330-339. doi:10.1152/ajprenal.00059.2006
[89] M. Shimizu, S. Kondo, M. Urushihara, et al., “Role of Integrin-Linked Kinase in Epithelial-Mesenchymal Transition in Crescent Formation of Experimental Glomerulonephritis,” Nephrology Dialysis Transplantation, Vol. 21, No. 9, 2006, pp. 2380-2390. doi:10.1093/ndt/gfl243
[90] B. G. Hudson, R. Kalluri, S. Gunwar, et al., “Molecular Characteristics of the Goodpasture Autoantigen,” Kidney International, Vol. 43, No. 1, 1993, pp. 135-139. doi:10.1038/ki.1993.22
[91] M. Urushihara, N. Ohashi, K. Miyata, et al., “Addition of Angiotensin II Type 1 Receptor Blocker to CCR2 Antagonist Markedly Attenuates Crescentic Glomerulonephritis,” Hypertension, Vol. 57, No. 3, 2011, pp. 586-593.
[92] A. A. Elmarakby, J. E. Quigley, J. J. Olearczyk, et al., “Chemokine Receptor 2b Inhibition Provides Renal Protection in Angiotensin II - Salt Hypertension,” Hypertension, Vol. 50, No. 6, 2007, pp. 1069-1076.
[93] H. Koike, T. Sada and M. Mizuno, “In vitro and in vivo Pharmacology of Olmesartan Medoxomil, an Angiotensin II type AT1 Receptor Antagonist,” Journal of Hypertension—Supplement, Vol. 19, No. 1, 2001, pp. S3-14.
[94] J. R. Ingelfinger, F. Jung, D. Diamant, et al., “Rat Proximal Tubule Cell Line Transformed with Origin-Defective SV40 DNA: Autocrine ANG II Feedback,” American Journal of Physiology, Vol. 276, No. 2, 1999, pp. F218- 227.
[95] A. Nishiyama, D. M. Seth and L. G. Navar, “Angiotensin II Type 1 Receptor-Mediated Augmentation of Renal Interstitial Fluid Angiotensin II in Angiotensin II-Induced Hypertension,” Journal of Hypertension, Vol. 21, No. 10, 2003, pp. 1897-1903. doi:10.1097/00004872-200310000-00017
[96] Y. Hisada, T. Sugaya, M. Yamanouchi, et al., “Angiotensin II Plays a Pathogenic Role in Immune-Mediated Renal Injury in Mice,” Journal of Clinical Investigation, Vol. 103, No. 5, 1999, pp. 627-635. doi:10.1172/JCI2454
[97] Y. Suzuki, I. Shirato, K. Okumura, et al., “Distinct contribution of Fc Receptors and Angiotensin II-Dependent Pathways in Anti-GBM Glomerulonephritis,” Kidney International, Vol. 54, No. 4, 1998, pp. 1166-1174. doi:10.1046/j.1523-1755.1998.00108.x
[98] N. Joss, K. R. Paterson, C. J. Deighan, et al., “Diabetic Nephropathy: How Effective Is Treatment in Clinical Practice?” QJM, Vol. 95, No. 1, 2002, pp. 41-49.
[99] P. Fioretto and M. Mauer, “Histopathology of Diabetic Nephropathy,” Seminars in Nephrology, Vol. 27, No. 2, 2007, pp. 195-207. doi:10.1016/j.semnephrol.2007.01.012
[100] Y. Taguma, Y. Kitamoto, G. Futaki, et al., “Effect of Captopril on Heavy Proteinuria in Azotemic Diabetics,” New England Journal of Medicine, Vol. 313, No. 26, 1985, pp. 1617-1620. doi:10.1056/NEJM198512263132601
[101] E.J. Lewis, L.G. Hunsicker, R.P. Bain, and R.D. Rohde, “The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group,” New England Journal of Medicine, Vol. 329, No. 20, 1993, pp. 1456-1462. doi:10.1056/NEJM199311113292004
[102] B. M. Brenner, M. E. Cooper, D. de Zeeuw, et al., “Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy,” New England Journal of Medicine, Vol. 345, No. 12, 2001, pp. 861-869. doi:10.1056/NEJMoa011161
[103] H. Haller, S. Ito, J. L. Izzo, Jr., et al., “Olmesartan for the Delay or Prevention of Microalbuminuria in Type 2 Diabetes,” New England Journal of Medicine, Vol. 364, No. 10, 2011, pp. 907-917. doi:10.1056/NEJMoa1007994
[104] J. R. Ingelfinger, “Preemptive Olmesartan for the Delay or Prevention of Microalbuminuria in Diabetes,” New England Journal of Medicine, Vol. 364, No. 10, 2011, pp. 970-971. doi:10.1056/NEJMe1014147
[105] P. Jacobsen, S. Andersen, K. Rossing, et al., “Dual Blockade of the Renin-Angiotensin System versus Maximal Recommended Dose of ACE Inhibition in Diabetic Nephropathy,” Kidney International, Vol. 63, No. 5, 2003, pp. 1874-1880. doi:10.1046/j.1523-1755.2003.00940.x
[106] C. E. Mogensen, S. Neldam, I. Tikkanen, et al., “Randomised Controlled Trial of Dual Blockade of Renin- Angiotensin System in Patients with Hypertension, Microalbuminuria, and Non-Insulin Dependent Diabetes: The Candesartan and Lisinopril Microalbuminuria (CALM) Study,” BMJ, Vol. 321, No. 7274, 2000, pp. 1440-1444.
[107] S. Hoshi, Y. Shu, F. Yoshida, et al., “Podocyte Injury Promotes Progressive Nephropathy in Zucker Diabetic Fatty Rats,” Laboratory Investigation, Vol. 82, pp. 25-35, No. 1, 2002.
[108] M. Mizuno, T. Sada, M. Kato and H. Koike, “Renoprotective Effects of Blockade of Angiotensin II AT1 Receptors in an Animal Model of Type 2 Diabetes,” Hypertension Research, Vol. 25, No. 2, 2002, pp. 271-278.
[109] J. P. Vora, S. M. Zimsen, D. C. Houghton and S. Anderson, “Evolution of Metabolic and Renal Changes in the ZDF/ Drt-fa Rat Model of Type II Diabetes,” Journal of the American Society of Nephrology, Vol. 7, No. 1, 1996, pp. 113-117.
[110] G. J. Etgen and B. A. Oldham, “Profiling of Zucker Diabetic Fatty Rats in Their Progression to the Overt Diabetic State,” Metabolism, Vol. 49, No. 5, 2000, pp. 684- 688.
[111] N. Ohashi, M. Urushihara, R. Satou and H. Kobori, “Glomerular Angiotensinogen is Induced in Mesangial Cells in Diabetic Rats via Reactive Oxygen Species-ERK/ JNK Pathways,” Hypertension Research, Vol. 33, No. 11, 2010, pp. 1174-1181. doi:10.1038/hr.2010.143
[112] R. Satou, R. A. Gonzalez-Villalobos, K. Miyata, et al., “Costimulation with Angiotensin II and Interleukin 6 augments Angiotensinogen Expression in cultured Human Renal Proximal Tubular Cells,” American Journal of Physiology—Renal Physiology, Vol. 295, No. 1, 2008, pp. F283-289. doi:10.1152/ajprenal.00047.2008
[113] T. J. Hsieh, S. L. Zhang, J. G. Filep, et al., “High Glucose Stimulates Angiotensinogen Gene Expression via Reactive Oxygen Species Generation in Rat Kidney Proximal Tubular Cells,” Endocrinology, Vol. 143, No. 8, 2002, pp. 2975-2985.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.