Concentration of Platinum Group Elements during the Early Earth Evolution: A Review*

DOI: 10.4236/nr.2017.83012   PDF   HTML   XML   1,289 Downloads   2,078 Views   Citations

Abstract

Numerous unique geological processes [1] took place during the early Earth evolution; several of them, especially those occurring in the Hadean—Early Archean and later, are reflected in the modern geological (geophysical, geochemical, etc.) pattern. One such significant enigmatic feature is the preservation of extremely dense and heavy platinum group elements (PGEs): Pt, Pd, Rh, Ru, Ir, Os. Concentration of PGEs during this period could have taken place in two ways: 1) presence of particular matter capable of preserving PGEs near the earth's surface, 2) transportation of PGEs by magma flows from deep lithospheric (asthenospheric) layers (slabs) to the subsurface. Clearly, much of the dense and heavy PGEs did not sink through to the Earth’s mantle (core) at the time of the magma-ocean, and occur near Earth’s surface in abundances for formation of ore deposits with PGE concentrations found to be 2 - 3 orders of magnitude greater than those in their host media. Their enrichments are associated in numerous cases with such enigmatic phenomena as formation of anorthosites and anorthosite-bearing layered magmatic intrusions. PGE deposits and mineralization zones are also found in associations with chromitites, dunites and serpentinites. In this review, problems related to the initial concentration and preservation of PGEs, their association with anorthosites, and formation of layered intrusions are discussed in detail. The main aim of this article is analysis of the requirements—initial concentration and preservation of PGE and PGM (Platinum Group Minerals) during the early Earth evolution, as well as examination of the distribution behavior of some PGEs in different ore deposits and meteorites. It is supposed that meteoritic bombardment of Earth has played a significant role in formation of PGEs deposits. Some conclusions made in this article may be useful for developing and enhancing strategies of prospecting for PGEs deposits.

Share and Cite:

Pilchin, A. and Eppelbaum, L. (2017) Concentration of Platinum Group Elements during the Early Earth Evolution: A Review*. Natural Resources, 8, 172-233. doi: 10.4236/nr.2017.83012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pilchin, A.N. and Eppelbaum, L.V. (2009) The Early Earth and Formation of the Lithosphere. In: Anderson, J.E. and Coates, R.W., Eds., The Lithosphere: Geochemistry, Geology and Geophysics, Nova Science Publication, New York, Chapter 1, 1-68.
[2] Maier, W.D. (2005) Platinum-Group Element (PGE) Deposits and Occurrences: Mineralization Styles, Genetic Concepts, and Exploration Criteria. Journal of African Earth Sciences, 41, 165-191.
https://doi.org/10.1016/j.jafrearsci.2005.03.004
[3] Mungall, J.E. and Naldrett, A.J. (2008) Ore Deposits of the Platinum-Group Elements. Elements, 4, 253-258.
https://doi.org/10.2113/GSELEMENTS.4.4.253
[4] Wyborn, L.A.I., Heinrich, C.A. and Jaques, A.L. (1994) Australian Proterozoic Mineral Systems: Essential Ingredients and Mappable Criteria. Proceedings of the Australian Institute of Miningand Metallurgy Annual Conference, Melbourne, 109-115.
[5] McQueen, K.G. (2005) Ore Deposit Types and their Primary Expressions. In: Cornelius, S.M. and Robertson, I.D.M., Eds., Regolith Expression of Australian Ore Systems: A Compilation of Exploration Case Histories with Conceptual Dispersion, Process and Exploration Models, CRC LEME, Australia, 1-14.
[6] Naldrett, A.J. (2004) Magmatic Sulfide Deposits: Geology, Geochemistry, and Exploration. Springer, Berlin.
https://doi.org/10.1007/978-3-662-08444-1
[7] Hoatson, D.M. (1998) Platinum-Group Element Mineralization in Australian Precambrian Layered Mafic-Ultramafic Intrusions. AGSO Journal of Australian Geology and Geophysics, 17, 139-151.
[8] Naldrett, A.J. and Von Gruenewaldt, G. (1989) Association of Platinum-Group Elements with Chromitites in Layered Intrusions and Ophiolite Complexes. Economic Geology, 84, 180-187.
https://doi.org/10.2113/gsecongeo.84.1.180
[9] Garuti, G., Pushkarev, V.E., Zaccarini, F., Cabella, R. and Anikina, E. (2002) Chromite-PGE Mineralization in the Uktus Alaskan-Type Complex (Central Urals, Russia). Transactions of the 9th International Platinum Symposium, 149-152.
[10] Foose, M. and Weiblen, P. (1986) The Physical and Petrologic Setting and Textural and Compositional Characteristics of Sulfides from the South Kawishiwi Intrusion, Duluth Complex, Minnesota, USA. In: Friedrich, G.H., Genkin, A.D., Naldrett, A.J., Ridge, J.D., Sillitoe, R.H. and Vokes, F.M., Eds., Geology and Metallogeny of Copper Deposits, Special Publication No. 4 of the Socistu for Geology Applied to Min. Deposits. Springer, Berlin, 4, 8-24.
https://doi.org/10.1007/978-3-642-70902-9_2
[11] Augé, T., Bailly, L., Cocherie, A., Genna, A., Guerrot, C., Lerouge, C., Mukherjee, M.M. and Patra, R.N. (2002) Magmatic and Hydrothermal Platinum-Group Element Mineralization in the Baula Area, Orissa, India. Transactions of the 9th International Platinum Symposium, Billins, Montana, 21-24.
[12] Thakurta, J., Ripley, E.M. and Li, C. (2008) Pre-Requisites for Sulphide-Poor PGE and Sulphide-rich Cu-Ni-PGE Mineralization in Alaskan-Type Complexes. Journal of the Geological Society of India, 72, 611-622.
[13] Nemerov, V.K., Razvozzhaeva, E.A., Spiridonov, A.M. and Granina, E.M. (2008) By-Product Platinum Mineralization of Gold Ore Deposit Sukhoy Log (Eastern Siberia). In: Deposits of Natural and Technogenic Raw Materials: Geology, Geochemistry and Geophysical Methods and Ecologic Geology, Voronezh State University, 159-160. (In Russian)
[14] Vasilyeva, I.E., Pozhidaev, Yu.N., Vlasova, N.N., Voronkov, M.G. and Philipchenko, Yu.A. (2010) Sorption-Atomic-Emission Determination of Gold, Platinum and Palladium in Rocks and Ores Using Sorbent PSTM-3Т. Analytical Controls, 14, 16-24. (In Russian)
[15] Chernyshov, N.M. (2004) Kshenskiy Type Gold-Platinum-Bearing Mineralization (Central Russia). Voronezh State University Bulletin, Geology, No. 1, 104-116. (In Russian)
[16] Chernyshov, N.M. and Chernyshova, M.N. (2012) Platinum-Bearing and Gold-Pla- tinum-Bearing Formations of Voronezh Crystalline Massif at Different Geodynamic Regimes of Formation Precambrian Lithosphere. Lithosphere, No. 1, 122-146. (In Russian)
[17] Houlé, M.G. and Lesher, C.M. (2011) Komatiite-Associated Ni-Cu-(PGE) Deposits, Abitibi Greenstone Belt, Superior Province, Canada. Reviews in Economic Geology, 17, 89-121.
[18] Cawthorn, R.G. (2010) The Platinum Group Element Deposits of the Bushveld Complex in South Africa. Platinum Metals Review, 54, 205-215.
https://doi.org/10.1595/147106710X520222
[19] Crowson, P. (2001) Minerals Handbook 2000-01: Statistics and Analyses of the World's Minerals Industry. Mining Journal Books Ltd., Edenbridge, Kent, UK.
[20] USGS (2005) Mineral Commodity Summaries. US Government Printing Office, Washington DC.
[21] Hedenquist, J.W. and Lowenstern, J.B. (1994) The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370, 519-527.
https://doi.org/10.1038/370519a0
[22] Lide, D.R., Ed. (2004) Handbook of Chemistry and Physics. 85th Edition, CRC Press, Boca Raton.
[23] Lodders, K., Palme H. and Gail, H.P. (2009) Abundances of the Elements in the Solar System. In: Trumper, J.E., Ed., Astronomy and Astrophysics, Landolt-Bornstein, New Series, Vol. VI/4B, Chap. 4.4, Berlin, Springer-Verlag, 560-630.
[24] Wang, Yu., Wang, J., Wang, L., Long, L., Liao, Z., Zhang, H. and Tang, P. (2011) Problems of PGE Metallogenesis Related to Mafic-Ultramafic Complexes in North Xinjiang, China. Geoscience Frontiers, 2, 187-198.
https://doi.org/10.1016/j.gsf.2011.03.008
[25] Pilchin, A.N. and Eppelbaum, L.V. (2006) Iron and Its Unique Role in Earth Evolution. Monograph, Mexican Geophys. Soc. 9, National University of Mexico.
[26] MacPherson, G.J. and Boss, A. (2011) Cosmochemical Evidence for Astrophysical Processes during the Formation of Our Solar System. PNAS, 108, 19152-19158.
https://doi.org/10.1073/pnas.1110051108
[27] MacPherson, G.J., Simon, S.B., Davis, A.M., Grossman, L. and Krot, A.N. (2005) Calcium-Aluminum-Rich Inclusions: Major Unanswered Questions. In: Krot, A.N., Scott, E.R.D. and Reipurth, B., Eds., Chondrites and the Protoplanetary Disk, ASP Conf. Series, 341, 225-250.
[28] Weiser, T.W. and Bachmann, H.-G. (1999) Platinum Group Minerals from the Aikora River Area, Papua New Guinea. Canadian Mineralogist, 37, 1131-1145.
[29] Barkov, A.Y., Martin, R.F., LeBarge, W. and Fedortchouk, Y. (2008) Grains of Pt-Fe Alloy and Inclusions in a Pt-Fe Alloy from Florence Creek, Yukon, Canada: Evidence for Mobility of Os in a Na-H2O-Cl-Rich Fluid. Canadian Mineralogist, 46, 343- 360.
https://doi.org/10.3749/canmin.46.2.343
[30] Bogdanov, K., Zaccarini, F., Garuti, G., Tzintsov, Z., and Ianakieva, N. (2012) Platinum Group Minerals (PGM) from Novoselsti Placers (Eastern Bulgaria): Evidence for a Ural-Alaskan-Type Intrusion? Transactions of the European Mineralogical Conference, 1, EMC2012-164.
[31] McDonough, W.F. and Sun, S.-S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[32] Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. In: Rudnick, R.L., Ed., The Crust, 3, Ch. 3.01, Elsevier, 1-64.
https://doi.org/10.1016/b0-08-043751-6/03016-4
[33] Morgan, J.W., Walker, R.J., Brandon, A.D. and Horan, M.F. (2001) Siderophile Elements in Earth's Upper Mantle and Lunar Breccias: Data Synthesis Suggests Manifestations of the Same Late Influx. Meteoritics & Planetary Science, 36, 1257-1276.
https://doi.org/10.1111/j.1945-5100.2001.tb01959.x
[34] Barnes, S-J. and Maier, W.D. (2002) Platinum-Group Element Distributions in the Rustenberg Layered Suite of the Bushveld Complex, South Africa. In: Cabri, L.J., Ed., The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements. Canad. Inst. of Mining, Metallurgy and Petroleum, Special Vol. 54, 431-458.
[35] Economou-Eliopoulos, M. (2011) Platinum-Group Elements (PGE) in Various Geotectonic Settings: Opportunities and Risk. Hellenic Journal of Geosciences, 45, 65-82.
[36] Hauri, E.H. and Hart, S.R. (1997) Rhenium Abundances and Systematics in Oceanic Basalts. Chemical Geology, 139, 185-205.
https://doi.org/10.1016/S0009-2541(97)00035-1
[37] Maier, W.D., Peltonen, P., McDonald, I., Barnes, S.J., Barnes, S.-J., Hatton, C. and Viljoen, F. (2012) The Concentration of Platinum-Group Elements and Gold in Southern African and Karelian Kimberlite-Hosted Mantle Xenoliths: Implications for the Noble Metal Content of the Earth's Mantle. Chemical Geology, 302–303, 119-135.
https://doi.org/10.1016/j.chemgeo.2011.06.014
[38] Zientek, M.L. (2012) Magmatic ore Deposits in layered Intrusions-Descriptive Model for Reef-Type PGE and Contact-Type Cu-Ni-PGE Deposits. Open-File Report 2012-1010, United States Geological Survey, U.S. Department of the Interior.
[39] Voytekhovsky, Y.L. and Neradovsky, Y.N. (2008) The Cu-Ni-PGE and Cr Deposits of the Monchegorsk Area, the Kola Peninsula, Russia. 33 IGC Excursion No. 48, 15-21 August 2008, Oslo.
[40] Zaccarini, F., Garuti, G. and Pushkarev, E.V. (2010) Unusual PGE-Rich Chromitite in the “Butyrin-Veins” of the Kytlym Ural-Alaskan Complex (Northern Urals) Transactions of the 11th INternational Platinum Symposium “PGE in the 21st Century, Sudbury, Ontario, Canada.
[41] Prichard, H.M. and Lord, R.A. (1993) An Overview of the PGE Concentrations in the Shetland Ophiolite Complex. Geological Society, London, 76, 273-294.
https://doi.org/10.1144/GSL.SP.1993.076.01.13
[42] Naldrett, A.J. (2010) Secular Variation of Magmatic Sulfide Deposits and Their Source Magmas. Economic Geology, 105, 669-688.
https://doi.org/10.2113/gsecongeo.105.3.669
[43] Vikentyev, I.V., Yudovskaya, M.A., Mokhov, A.V., Kerzin, A.L. and Tsepin, A.I. (2004) Gold and PGE in Massive Sulfide Ore of the Uzalginsk Deposit, Southern Urals, Russia.Canadian Mineralogist, 42, 651-665.
https://doi.org/10.2113/gscanmin.42.2.651
[44] Crocket, J.H. (1979) Platinum-Group Elements in Mafic and Ultramafic Rocks: A Survey. Canadian Mineralogist, 17, 39l-402.
[45] Naldrett, A.J., Wilson, A., Kinnaird, J. and Chunnett, G. (2009) PGE Tenor and Metal Ratios within and below the Merensky Reef, Bushveld Complex: Implications for Its Genesis. Journal of Petrology, 50, 625-659.
https://doi.org/10.1093/petrology/egp015
[46] Barnes, S.-J., Maier, W.D. and Ashwal, L.D. (2004) Platinum-Group Element Distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chemical Geology, 208, 293-317.
https://doi.org/10.1016/j.chemgeo.2004.04.018
[47] Tagle, R. and Berlin, J. (2008) A Database of Chondrite Analyses Including Platinum Group Elements, Ni, Co, Au, and Cr: Implications for the Identification of Chondritic Projectiles. Meteoritics & Planetary Science, 43, 541-559.
https://doi.org/10.1111/j.1945-5100.2008.tb00671.x
[48] McDonald, I. and Russell, S.S. (2001) Platinum-Group Elements in Enstatite Chondrites and Enstatite Achondrites. Meteoritics and Plan. Science, 36, A128.
[49] Kitts, K. and Lodders, K. (1998) Survey and Evaluation of Eucrite Bulk Compositions. Meteoritics & Planetary Science, 33, A197-A213.
https://doi.org/10.1111/j.1945-5100.1998.tb01334.x
[50] Neal, C.R., Taylor, L.A., Ely, J.C., Jain, J.C. and Nazarov, M.A. (2001) Detailed Geochemistry of New Shergottite, Dhofar 019 (Abstract). Lunar and Planetary Science, 32, #1671, Lunar and Planetary Institute, Houston, Texas, USA (CD- ROM).
[51] McSween Jr., H.Y. (2008) Martian Meteorites as Crustal Samples. In: Bell, J., Ed., The Martian Surface: Composition, Mineralogy and Physical Properties, Cambridge University Press, Cambridge, 381-396.
https://doi.org/10.1017/CBO9780511536076.018
[52] Anand, M., Taylor, L.A., Neal, C.R., Snyder, G.A., Patchen, A., Sano, Y. and Terada, K. (2003) Petrogenesis of Lunar Meteorite EET 96008. Geochimica et Cosmochimica Acta, 67, 3499-3518.
https://doi.org/10.1016/S0016-7037(03)00134-0
[53] Snyder, G.A., Neal, C.R., Ruzicka, A.M. and Taylor, L.A. (1999) Lunar Meteorite EET 96008, PART II. Whole-Rock Trace-Element and PGE Chemistry, and Pairing with EET 87521. Lunar and Planetary Science, XXX, Abstract No. 1705.
[54] Mason, B. and Taylor, S.R. (1982) Inclusions in the Allende Meteorite. Smithsonian Contributions to the Earth Science, No. 25. Smithsonian Institution Press, Washington DC.
[55] Grossman, L. and Ganapathy, R. (1976) Trace Elements in the Allende Meteorite-I. Coarse-Grained, Ca-Rich Inclusions. Geochimica et Cosmochimica Acta, 40, 331- 344.
https://doi.org/10.1016/0016-7037(76)90211-8
[56] Connolly Jr., H.C., Huss, G.R. and Wasserburg, G.J. (2001) On the Formation of Fe-Ni Metal in Renazzo-Like Carbonaceous Chondrites. Geochimica et Cosmochimica Acta, 65, 4567-4588.
https://doi.org/10.1016/S0016-7037(01)00749-9
[57] Weisberg, M.K., Smith, C., Benedix, G., Folco, L., Righter, K., Zipfel, J., Yamaguchi, A. and Chennaoui Aoudjehane, H. (2009) The Meteoritical Bulletin No. 95. Meteoritics and Planetary Science, 44, 429-462.
https://doi.org/10.1111/j.1945-5100.2009.tb00742.x
[58] Lodders, K. (2003) Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591, 1220-1247.
https://doi.org/10.1086/375492
[59] Palme, H. and Jones, A. (2005) Solar System Abundances of the Elements. In: Davis, A.M., Ed., Meteorites, Comets, and Planets. Treatise on Geochemistry 1, Elsevier, 41-62.
[60] McSween Jr., H.Y. (1999) Meteorites and Their Parent Planets. 2nd Edition, Cambridge University Press, Cambridge.
[61] Weisberg, M.K., McCoy, T.J. and Krot, A.N. (2006) Systematics and Evaluation of Meteorite Classification. In: Lauretta, D.S. and McSween Jr., H.Y., Eds., Meteorites and the Early Solar System II, The University of Arizona Press, 19-52.
[62] Zolensky M.E. and McSween, H.Y. (1988) Aqueous Alteration. In: Kerridge, J.F. and Matthews, M.S., Eds., Meteorites and the Early Solar System, University of Arizona Press, 114-143.
[63] Krot, A.N., Hutcheon, I.D., Brearley, A.J., Pravdivtseva, O.V., Petaev, M.I. and Hohenberg, C.M. (2006) Timescales and Settings for Alteration of Chondritic Meteorites. In: Lauretta, D.S. and McSween, Jr., H.Y., Eds., Meteorites and the Early Solar System II. Univ. of Arizona Press, Tucson, 525-553.
[64] Drake, M.J. and Righter, K. (2002) Determining the Composition of the Earth. Nature, 416, 39-44.
https://doi.org/10.1038/416039a
[65] Anderson, D.L. (2007) New Theory of the Earth. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139167291
[66] Pilchin, A.N. (2011) Magnetite: The Story of the Mineral′s Formation and Stability. In: Angrove, D.M., Ed., Magnetite: Structure, Properties and Applications, Nova Science Publication, New York, Chapter 1, 1-99.
[67] Norton, O.R. (2002) The Cambridge Encyclopedia of Meteorites. Cambridge University Press, Cambridge.
[68] Gupta, G. and Sahijpal, S. (2010) Differentiation of Vesta and the Parent Bodies of Other Achondrites. Journal of Geophysical Research: Planets, 115, E08001, 1-15.
https://doi.org/10.1029/2009je003525
[69] Mason, B. (1972) The Mineralogy of Meteorites. Meteoritics, 7, 309-326.
https://doi.org/10.1111/j.1945-5100.1972.tb00445.x
[70] Marvin, U.B. (2006) Meteorites in History: An Overview from the Renaissance to the 20th Century. In: McCall, G.J.H., Bowden, A.J. and Howarth, R.J., Eds., The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds. Geological Society, Special Publication, London, 256, 15-71.
https://doi.org/10.1144/GSL.SP.2006.256.01.02
[71] Grossman, L. (1973) Refractory Trace Elements in Ca-Al-Rich Inclusions in the Allende Meteorite. Geochimica et Cosmochimica Acta, 37, 1119-1140.
https://doi.org/10.1016/0016-7037(73)90051-3
[72] Haack, H. and McCoy, T.J. (2005) Iron and Stony-Iron Meteorites. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Elsevier, Amsterdam, 325- 345.
[73] Chen, J.H., Papanastassiou, D.A. and Wasserburg, G.J. (2002) Re-Os and Pd-Ag Systematics in Group IIIAB Irons and in Pallasites. Geochimica et Cosmochimica Acta, 66, 3793-3810.
https://doi.org/10.1016/S0016-7037(02)00952-3
[74] Mittlefehldt, D.W. (2005) Achondrites. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Elsevier, Amsterdam, 291-324.
[75] Palme, H., Hutcheon, I.D. and Spettel, B. (1994) Composition and Origin of Refractory-Metal-Richassemblages in a Ca, Al-Rich Allende Inclusion. Geochimica et Cosmochimica Acta, 58, 495-513.
https://doi.org/10.1016/0016-7037(94)90479-0
[76] Campbell, A.J., Simon, S.B., Humayun, M. and Grossman, L. (2003) Chemical Evolution of Metal in Refractory Inclusions in CV3 Chondrites. Geochimica et Cosmochimica Acta, 67, 3119-3134.
https://doi.org/10.1016/S0016-7037(02)00837-2
[77] Pilchin, A.N. and Eppelbaum, L.V. (2012) The Early Earth, Formation and Evolution of the Lithosphere in the Hadean-Middle Archean. In: Sato, F. and Nakamura, Sh., Eds., Encyclopedia of Earth Science Research, 1, Chapter 1, 1-93.
[78] Eppelbaum, L.V., Kutasov, I.M. and Pilchin, A.N. (2014) Applied Geothermics. Springer, Berlin-Heidelberg.
https://doi.org/10.1007/978-3-642-34023-9
[79] Pattou, L., Lorand, J.P. and Gros, M. (1996) Non-Chondritic Platinum-Group Element Ratios in the Earth's Mantle. Nature, 379, 712-715.
https://doi.org/10.1038/379712a0
[80] Ringwood, A.E. (1966) The Chemical Composition and Origin of the Earth. In: Hurley, P.M., Ed., Advances in Earth Science, M.I.T. Press, Cambridge, MA, 287- 356.
[81] Righter, K., Humayun, M. and Danielson, L. (2008) Partitioning of Palladium at High Pressures and Temperatures during Core Formation. Nature Geoscience, 1, 321-323.
https://doi.org/10.1038/ngeo180
[82] Prescher, C., Cernok, A., Allu Peddinti, D., Bell, E.A., Wielicki, M.M., Bello, L., Ghosh, N., Tucker, J. and Zahnle, K.J. (2012) Origin and Mixing Timescale of Earth's Late Veneer. Transactions of the AGU Annual Fall Meeting, Abstract V51B- 2775.
[83] Lorand, J.-P., Alard, O., and Godard, M. (2009) Platinum-Group Element Signature of the Primitive Mantle Rejuvenated by Melt-Rock Reactions: Evidence from Sumail Peridotites (Oman Ophiolite). Terra Nova, 21, 35-40.
https://doi.org/10.1111/j.1365-3121.2008.00850.x
[84] Dauphas, N. and Marty, B. (2002) Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases. Journal of Geophysical Research, 107, 121-127.
https://doi.org/10.1029/2001JE001617
[85] Maier, W.D., Barnes, S.J., Campbell, I.H., Fiorentini, M.L., Peltonen, P., Barnes, S.-J. and Smithies, R.H. (2009) Progressive Mixing of Meteoritic Veneer into the Early Earth’s Deep Mantle. Nature, 460, 620-623.
https://doi.org/10.1038/nature08205
[86] Eppelbaum, L.V. (2007) Localization of Ring Structures in Earth’s Environments. Journal of the Archaeological Society of the Slovakian Academy of Science, Special Issue: Archaeological Prospection, XLI, 145-148.
[87] Cooper, G.R.J. (2010) Enhancing Circular Features in Potential Field Data. Exploration Geophysics, 41, 174-177.
https://doi.org/10.1071/EG09039
[88] Eppelbaum, L.V. and Khesin, B.E. (2012) Geophysical Studies in the Caucasus. Springer, Heidelberg, New York.
https://doi.org/10.1007/978-3-540-76619-3
[89] Elbeshausen, D., Wünnemann, K. and Collins, G.S. (2013) The Transition from Circular to Elliptical Impact Craters. Journal of Geophysical Research, 118, 1-15.
https://doi.org/10.1002/2013je004477
[90] Koeberl, Ch. (2006) Impact Processes on the Early Earth. Elements, 2, 211-216.
https://doi.org/10.2113/gselements.2.4.211
[91] Safronov, V.S. (1978) The Heating of the Earth during Its Formation. Icarus, 33, 3-12.
https://doi.org/10.1016/0019-1035(78)90019-2
[92] Vacquier, V. (1998) A Theory of the Origin of the Earth's Internal Heat. Tectonophysics, 291, 1-7.
https://doi.org/10.1016/S0040-1951(98)00026-2
[93] Abe, Y. (1997) Thermal and Chemical Evolution of the Terrestrial Magma Ocean. Physics of the Earth and Planetary Interiors, 100, 27-39.
https://doi.org/10.1016/S0031-9201(96)03229-3
[94] Pollack, H.N. (1997) Thermal characteristics of the Archaean. In: de Wit, M.J. and Ashwal, M.D., Eds., Greenstone Belts, Clarendon Press, Oxford, 223-232.
[95] Solomatov, V.S. (2000) Fluid Dynamics of a Terrestrial Magma ocean, In: Canup, R. and Righter, K., Eds., Origin of the Earth and Moon. Univ. of Arizona Press, Tucson, Arizona, 323-338.
[96] Goldstein, J.I., Scott, E.R.D. and Chabot, N.L. (2009) Iron Meteorites: Crystallization, Thermal History, Parent Bodies, and Origin. Chemie der Erde, 69, 293-325.
https://doi.org/10.1016/j.chemer.2009.01.002
[97] Alard, O., Griffin, W.L., Lorand, J.P., Jackson, S.E. and O'Reilly, S.Y. (2000) Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407, 891-894.
https://doi.org/10.1038/35038049
[98] Sankaran, A.V. (2009) Komatiites through Time Reflect Trends in Mantle Incorporation of Meteoritic Platinum Group Elements. Current Science, 97, 1280-1281.
[99] Fiorentini, M.L., Barnes, S.J., Maier, W.D., Burnham, O.M. and Heggie, G. (2011) Global Variability in the Platinum-Group Element Contents of Komatiites. Journal of Petrology, 52, 83-112.
https://doi.org/10.1093/petrology/egq074
[100] Tagle, R. and Claeys, Ph. (2005) An Ordinary Chondrite Impactor for the Popigai crater, Siberia. Geochimica et Cosmochimica Acta, 69, 2877-2889.
https://doi.org/10.1016/j.gca.2004.11.024
[101] Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Loosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H. and Wolbach, W.S. (2007) Evidence for an Extraterrestrial Impact 12,900 Years Ago That Contributed to the Megafaunal Extinctions and the Younger Dryas cooling. PNAS, 104, 16016-16021.
https://doi.org/10.1073/pnas.0706977104
[102] Firestone, R.B. (2009) The Case for the Younger Dryas Extraterrestrial Impact Event: Mammoth, Megafauna, and Clovis Extinction, 12,900 Years Ago. Journal of Cosmology, 2, 256-285.
[103] Paquay, F.S., Goderis, S., Ravizza, G., Vanhaeck, F., Boyd, M., Surovell, T.A., Holliday, V.T., Haynes Jr., C.V. and Claeys, Ph. (2009) Absence of Geochemical Evidence for an Impact Event at the Bølling-Allerød/Younger Dryas Transition. PNAS, 106, 21505-21510.
https://doi.org/10.1073/pnas.0908874106
[104] Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., Antonenko, I., Canup, R.M., Halliday, A.N., Grove, T.L., Hager, B.H., Lee, D.-C. and Wiechert, U. (2006) Thermal and Magmatic Evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60, 365-518.
https://doi.org/10.2138/rmg.2006.60.4
[105] Scoates, J.S. (2000) The Plagioclase-Magma Density Paradox Re-Examined and the Crystallization of Proterozoic Anorthosites. Journal of Petrology, 41, 627-649.
https://doi.org/10.1093/petrology/41.5.627
[106] Pilchin, A.N. (2010) The Forsterite Layer and Density of Olivine under Lithospheric and Asthenospheric P-T-Conditions. Transations of the Annual Meeting GeoCanada, Calgary, Alberta (Abstract)
[107] Hewins, R.H., Jones, R.H. and Scott, E.R.D., Eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge University Press, Cambridge.
[108] Davis, B.T.C. and England, J.L. (1964) The Melting of Forsterite up to 50 Kilobars. Journal of Geophysical Research, 69, 1113-1116.
https://doi.org/10.1029/JZ069i006p01113
[109] Coombs, M.L. and Gardner, J.E. (2004) Reaction Rim Growth on Olivine in Silicic Melts—Implications for Magma Mixing. American Mineralogist, 89, 748-759.
https://doi.org/10.2138/am-2004-5-608
[110] Shiraishi, Y., Ikeda, K., Tamura, A. and Saito, T. (1978) On the Viscosity and Density of the Molten FeO-SiO2 System. Transactions of the Japan Institute of Metals and Materials, 19, 264-274.
https://doi.org/10.2320/matertrans1960.19.264
[111] de Koker, N.P., Stixrude, L. and Karki, B.B. (2008) Thermodynamics, Structure, Dynamics, and Freezing of Mg2SiO4 Liquid at High Pressure. Geochimica et Cosmochimica Acta, 72, 1427-1441.
https://doi.org/10.1016/j.gca.2007.12.019
[112] Lange, R.A. (1997) A Revised Model for the Density and Thermal Expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 Liquids from 700 to 1900 K: Extension to Crustal Magmatic Temperatures. Contributions to Mineralogy and Petrology, 130, 1-11.
https://doi.org/10.1007/s004100050345
[113] Knittle, E. (1995) Static Compression Measurements of Equations of State. In: Ahrens, T.J., Ed., Mineral Physics and Crystallography: A Handbook of Physical Constants. American Geophysical Union, 98-142.
https://doi.org/10.1029/RF002p0098
[114] Ghiorso, M. (2004) An Equation of State for Silicate Melts. Parts I, III, IV. American Journal of Science, 304, 637-678, 752-810, 811-838.
https://doi.org/10.2475/ajs.304.8-9.637
[115] Courtial, Ph., Ohtani, E. and Dingwell, D.R. (1997) High-Temperature Densities of Some Mantle Melts. Geochimica et Cosmochimica Acta, 61, 3111-3119.
https://doi.org/10.1016/S0016-7037(97)00154-3
[116] Walker, D., Agee, C.B. and Zhang, Y. (1988) Fusion Curve Slope and Crystal/Liquid Buoyancy. Journal of Geophysical Research, 93, 313-323.
https://doi.org/10.1029/JB093iB01p00313
[117] Hall, A. (1995) Igneous Petrology. Longman Scientific & Technical, Singapore.
[118] Carmichael, R.S. Ed. (1982) Handbook of Physical Properties of Rocks, Vol. I. CRC Press, Baca Roton.
[119] Clark Jr., S.P., Ed. (1966) Handbook of Physical Constants. Revised Edition, Geological Society of America Memoirs 97, Washington DC.
[120] Adams, L.X. (1924) Temperatures at Moderate Depths within the Earth. Journal of the Washington Academy of Sciences, 14, 459-472.
[121] Clauser, Ch. (2009) Heat Transport Processes in the Earth’s Crust. Surveys in Geophysics, 30, 163-191.
https://doi.org/10.1007/s10712-009-9058-2
[122] Rubin, A.E. (2003) Chromite-Plagioclase Assemblages as a New Shock Indicator; Implications for the Shock and Thermal Histories of Ordinary Chondrites. Geochimica et Cosmochimica Acta, 67, 2695-2709.
https://doi.org/10.1016/S0016-7037(03)00107-8
[123] Alexandrov, V.I., Gordon, V.G., Muraviev, E.N., Osiko, V.V., Prokhorov, A.M., Spiridonov, E.G. and Tatarintsev, V.M. (1977) Method of Synthesis of Metal Chromites. United States Patent 4035266.
[124] Bowen, N.L. and Tuttle, O.F. (1949) The System MgO-SiO2-H2O. Geological Society of America Bulletin, 60, 439-460.
https://doi.org/10.1130/0016-7606(1949)60[439:TSM]2.0.CO;2
[125] Falloon, T.J., Green, D.H., Danyushevsky, L.V. and McNeill, A.W. (2008) The Composition of Near-Solidus Partial Melts of Fertile Peridotite at 1 and 1•5 GPa: Implications for the Petrogenesis of MORB. Journal of Petrology, 49, 591-613.
https://doi.org/10.1093/petrology/egn009
[126] Azmon, E. (1965) Melting Temperature of Complex Silicates. Annals of the New York Academy of Sciences, 123, 481-494.
https://doi.org/10.1111/j.1749-6632.1965.tb20379.x
[127] Canil, D. (1991) Experimental Evidence for the Exsolution of Cratonic Peridotite from High-Temperature Harzburgite. Earth and Planetary Science Letters, 106, 64- 72.
https://doi.org/10.1016/0012-821X(91)90063-N
[128] Opta Minerals Inc. (2012) Chromite.
http://www.optaminerals.com/Foundry/Chromite.html
[129] El-Rafei, E.A. (1971) Reversible Phase Transformation in the System Calcium Oxide-Chromium Sesquioxide-Oxygen. Jour. of Applied Chemistry and Biotechnology, 21, 261-265.
https://doi.org/10.1002/jctb.5020210904
[130] Mori, M., Yamamoto, T., Ichikawa, T. and Takeda, Y. (2002) Dense Sintered Conditions and Sintering Mechanisms for Alkaline Earth Metal (Mg, Ca and Sr)-Doped LaCrO3 Perovskites under Reducing Atmosphere. Solid State Ionics, 148, 93-101.
https://doi.org/10.1016/S0167-2738(02)00109-1
[131] Crundwell, F., Moats, M., Ramachandran, V., Robinson, T. and Davenport, W.G. (2011) Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. Elsevier.
[132] Morozova, L.V. and Popov, V.P. (2010) Synthesis and Investigation of Magnesium Chromium Spinel. Glass Physics and Chemistry, 36, 86-91.
https://doi.org/10.1134/S1087659610010153
[133] Oo, W.W.K.K., Aye, Sh.W.H. and Lwin, K.T. (2008) Study on the Production of Chromite Refractory Brick from Local Chromite Ore. World Academy of Science, Engineering and Technology, 46, 569-574.
[134] Hockaday, S.A.C. and Bisaka, K. (2010) Sone Aspects of the Production of Ferrochrome Alloys in Pilot DC Arc Furnaces at Mintek. Proceedingas of the 12th International Ferroalloys Congress, Helsinki, Finland, 367-376.
[135] Augustion, C.O., Prabhakaran, D. and Srinivasan, L.K. (1993) Fabrication and Characterization of NiCr2O4 Spinel. Journal of Materials Science Letters, 12, 383-386.
https://doi.org/10.1007/BF00609161
[136] Song, S.-H., Yuan, Z.-X. and Xiao, P. (2003) Electrical Properties of MnCr2O4 Spinel. Journal of Materials Science Letters, 22, 755-757.
https://doi.org/10.1023/A:1023764312610
[137] Escayola, M., Garuti, G., Zaccarini, F., Proenza, J.A., Bédard, J.H. and Van Staal, C. (2011) Chromitite and Platinum-Group-Element Mineralization at Middle Arm Brook, Central Advocate Ophiolite Complex, Baie Verte Peninsula, Newfoundland, Canada. Canadian Mineralogist, 49, 1523-1547.
https://doi.org/10.3749/canmin.49.6.1523
[138] Melcher, F., Grum, W., Simon, G., Thalhammer, T.V. and Stumpfl, E.F. (1997) Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38, 1419- 1458.
https://doi.org/10.1093/petroj/38.10.1419
[139] Arif, M. and Qasim, J.M. (1993) Chemistry of Chromite and Associated Phases from the Shangla Ultramafic Body in the Indus Suture Zone of Pakistan. Geological Society, London, Special Publications, 74, 101-112.
https://doi.org/10.1144/GSL.SP.1993.074.01.08
[140] Ligui, P. (1987) A Study on Inclusion in Chromite of Alpine-Type Ultrabasic Rocks in Western Jungar Area of Xinjiang, China. Acta Geosicientia Sinica, 9, 103-119.
[141] Ahmed, A.H., Arai, S. and Attia, A.K. (2001) Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Ophiolite Complexes of Egypt. Mineralium Deposita, 36, 72-84.
https://doi.org/10.1007/s001260050287
[142] Pushkarev, E.V., Anikina, E.V., Garuti, G. and Zaccarini, F. (2005) Postmagmatic Origin of Platinum Deposits in the Ural-Alaskan Type Ultramafites: T-fO2 Conditions and Role of Fluids. In: Törmänen, T.O. and Alapieti, T.T., Eds., Transactions of the 10th International Platinum Symposium, 223-226.
[143] Nixon, G.T., Cabrill, J. and Gilles Laflamme, J.H. (1990) Platinum Group Element Mineralization in Lode and Placer Deposits Associated with the Tulameen Alaskan Type Complex, British Columbia. Canadian Mineralogist, 28, 503-535.
[144] Benham, A.J., Kovac, P., Petterson, M.G., Rojkovic, I., Styles, M.T., Gunn, A.G., McKervey, J.A. and Wasy, A. (2009) Chromite and PGE in the Logar ophiolite Complex, Afghanistan. Trans. of the Inst. of Mining and Metallurgy Section B Applied Earth Science, 118, 45-58.
[145] Ismail, S.A., Mirza, T.M. and Carr, P.F. (2010) Platinum-Group Elements Geochemistry in Podiform Chromitites and Associated Peridotites of the Mawat ophiolite, Northeastern Iraq. Journal of Asian Earth Sciences, 37, 3-41.
https://doi.org/10.1016/j.jseaes.2009.07.005
[146] Orovetskii, Yu.P. (1999) Mantle Plumes. A. A. Belkema, Rotterdam, The Netherlands.
[147] Marshall, J.S., Pounder, E.R. and Stewart, R.W. (1967) Physics. 2nd Edition, Macmillan of Canada, Toronto.
[148] Dingwell, D.B. and Mysen, B.O. (1985) Effects of Water and Fluorine on the Viscosity of Albite Melt at High Pressure: A Preliminary Investigation. Earth and Planetary Science Letters, 74, 266-274.
https://doi.org/10.1016/0012-821X(85)90026-3
[149] Dingwell, D. B. (1987) Melt viscosities in the System NaAlSi3O8-H2O-F2O-1. In: Mysen, B.O., Ed., Magmatic Processes: Physicochemical Principles. The Geochemical Society, Special Publication No. 1, 423-431.
[150] Toplis, M.J. Dingwell, D.B., Hess, K.-U. and Lenchi, T. (1997) Viscosity, Fragility, and Configurational Entropy of Melts along the Join SiO2-NaAlSiO4. American Mineralogist, 82, 979-990.
https://doi.org/10.2138/am-1997-9-1014
[151] Scarfe, Ch.M. and Cronin, D.J. (1986) Viscosity-Temperature Relationships of Melts at 1 atm in the System Diopside-Albite. American Mineralogist, 71, 767-771.
[152] Hummel, W. and Arndt, J. (1985) Variation of Viscosity with Temperature and Composition in the Plagioclase System. Contrib. to Mineralogy and Petrology, 90, 83-92.
https://doi.org/10.1007/BF00373044
[153] Deer, W.A., Zussman, J. and Howie, R.A. (2001) Rock-Forming Minerals: Framework Silicates: Feldspars. Vol. 4a, 2nd Edition, The Geological Society of London, London.
[154] Ganguly, J. (2008) Thermodynamics in Earth and Planetary Sciences. Springer- Verlag, Berlin-Heidelberg.
https://doi.org/10.1007/978-3-540-77306-1
[155] Ashwal, L. (1998) Anorthosites: Classification, Mythology, Trivia, and a Simple Unified Theory. LPI Technical Report #88-06. Houston, Texas, Lunar and Planetary Inst., 30-32.
[156] Shaw, H.R. (1972) Viscosities of Magmatic Silicate Liquids: An Empirical Method of Prediction. American Journal of Science, 272, 870-893.
https://doi.org/10.2475/ajs.272.9.870
[157] Öhman, T. and Kring, D.A. (2012) Photogeologic Analysis of Impact Melt-Rich Lithologies in Kepler Crater That Could Be Sampled by Future Missions. Journal of Geophysical Research, 117, E00H08.
https://doi.org/10.1029/2011JE003918
[158] Hiemstra, S.A. (1979) The Role of Collectors in the Formation of the Platinum Deposits in the Bushveld Cornplex. Canadian Mineralogist, 17, 469-482.
[159] Pilchin, A. (2005) The Role of Serpentinization in Exhumation of High- to Ultra-High-Pressure Metamorphic Rocks. Earth and Planetary Science Letters, 237, 815-828.
https://doi.org/10.1016/j.epsl.2005.06.053
[160] Matveev, S. and Ballhaus, Ch. (2002) Role of Water in the Origin of Podiform Chromitite Deposits. Earth and Planetary Science Letters, 203, 235-243.
https://doi.org/10.1016/S0012-821X(02)00860-9
[161] Prichard, H.M., Barnes, S.-J., Maier, W.D. and Fisher, P.C. (2004) Variations in the Nature of the Platinum-Group Minerals in a Cross-Section through the Merensky Reef at Impala Platinum: Implications for the Mode of Formation of the Reef. Canad. Mineralogist, 42, 423-437.
https://doi.org/10.2113/gscanmin.42.2.423
[162] Page, P., Barnes, S.-J., Zientek, M.L., Prichard, H.M. and Fisher, P.C. (2009) IPGE (Os, Ir, Ru) Are Not in Chromite. Proceedings of 24th IAGS (Fredericton), 197-200.
[163] Pagé, P., Barnes, S.-J., Zientek, M.L., Prichard, H.M. and Fisher, P.C. (2010) Chromite Does Not Control IPGE (Os, Ir, Ru). Proceedings of the 11th International Platinum Symposium Ontario Geological Survey.
[164] Ballhaus, Ch. and Sylvester, P. (2000) Noble Metal Enrichment Processes in the Merensky Reef, Bushveld Complex. Journal of Petrology, 41, 545-561.
https://doi.org/10.1093/petrology/41.4.545
[165] Economou-Eliopoulos, M., Eliopoulos, D.G. and Chryssoulis, S. (2008) A Comparison of High-Au Massive Sulfide Ores Hosted in Ophiolite Complexes of the Balkan Peninsula with Modern Analogues: Genetic Significance. Ore Geology Reviews, 33, 81-100.
https://doi.org/10.1016/j.oregeorev.2006.10.009
[166] Yudovskaya, M., Kinnaird, J., Naldrett, A.J., Mokhov, A., Kuznetsova, M. and McDonald, I. (2010) Facies Variability of PGE Mineralization in Platreef Chromitites. Transactions of the 11th INternational Platinum Symposium, Ontario Geological Survey.
[167] Huppert, H.E. and Sparks, R.S.J. (1985) Komatiites I: Eruption and Flow. Journal of Petrology, 26, 694-725.
https://doi.org/10.1093/petrology/26.3.694
[168] Dingwell, D. B., Courtial, P., Giordano, D. and Nichols, A.R.L. (2004) Viscosity of Peridotite Liquid. Earth and Planetary Science Letters, 226, 127-138.
https://doi.org/10.1016/j.epsl.2004.07.017
[169] Liebske, Ch., Schmickler, B., Terasaki, H., Poe, B.T. Suzuki, A., Funakoshi, K.-I., Ando, R. and Rubie, D.C. (2005) Viscosity of Peridotite Liquid up to 13 GPa: Implications for Magma Ocean Viscosities. Earth and Planetary Science Letters, 240, 589-604.
https://doi.org/10.1016/j.epsl.2005.10.004
[170] Adjaoud, O., Steinle-Neumann, G. and Jahn, S. (2011) Transport Properties of Mg2SiO4 Liquid at High Pressure: Physical State of a Magma Ocean. Earth and Planetary Science Letters, 312, 463-470.
https://doi.org/10.1016/j.epsl.2011.10.025
[171] Fedortchouk, Y., LeBarge, W., Barkov, A.Y., Fedele, L. and Bodnar, R.J. (2010) Major- and Trace-Element Composition of Platinum Group Minerals and Their Inclusions from Several Yukon Placers. In: MacFarlane, K.E., Weston, L.H. and Blackburn, L.R., Eds., Yukon Exploration and Geology 2009. Yukon Geological Survey, 185-196.
[172] Maier, W.D., de Klerk, L., Blaine, J., Manyeruke, T., Barnes, S.-J., Stevens, M.V.A. and Mavrogenes, J.A. (2008) Petrogenesis of Contact-Style PGE Mineralization in the Northern Lobe of the Bushveld Complex: Comparison of Data from the Farms Rooipoort, Townlands, Drenthe and Nonnenwerth. Mineralium Deposita, 43, 255- 280.
https://doi.org/10.1007/s00126-007-0145-3
[173] Cameron, E.N. (1977) Chromite in the Central Sector of the Eastern Bushveld Complex, South Africa. American Mineralogist, 62, 1082-1096.
[174] McDonald, I., Holwell, D.A. and Armitage, P.E.B. (2005) Stratigraphy and Platinum-Group Element Mineralization in the Northern Lobe of the Bushveld Complex, South Africa. In: Törmänen, T.O. and Alapieti, T.T., Eds., Transactions of the 10th International Platinum Symposium, Extended Abstracts, 193-196.
[175] Boudreau, A. (1999) Fluid Fluxing of Cumulates: The J-M Reef and Associated Rocks of the Stillwater Complex, Montana. Journal of Petrology, 40, 755-772.
https://doi.org/10.1093/petroj/40.5.755
[176] Boudreau, A.E. and McCallum, I.S. (1986) Investigations of the Stillwater Complex; III, The Picket Pin Pt/Pd Deposit. Economic Geology, 8, 1953-1975.
https://doi.org/10.2113/gsecongeo.81.8.1953
[177] Saini-Eidukat, B., Weiblen, P.W., Bitsianes, G. and Glascock, D. (1990) Contrasts between Platinum Group Element Contents and Biotite Compositions of Duluth Complex Troctolitic and Anorthositic Series Rocks. Mineralogy and Petrology, 42, 121-140.
https://doi.org/10.1007/BF01162687
[178] Talkington, R.W. and Watkinson, D.H. (1984) Trends in the Distribution of the Precious Metals in the Lac-Des-Iles Complex, Northwestern Ontario. Canadian Mineralogist, 22, 125-136.
[179] Pettigrew, N.T. and Hattori, K.H. (2001) Geology of the Palladium-Rich Legris Lake Mafic-Ultramafic Complex, Western Wabigoon Subprovince, Northwestern Ontario. Exploration and Mining Geology, 10, 35-49.
https://doi.org/10.2113/10.1-2.35
[180] Bayanova, T., Ludden, J. and Mitrofanov, F. (2009) Timing and Duration of Palaeoproterozoic Events Producing Ore-Bearing Layered Intrusions of the Baltic Shield: Metallogenic, Petrological and Geodynamic Implications. Geological Society, London, Special Publications, 323, 165-198.
https://doi.org/10.1144/SP323.8
[181] Orsoev, D.A., Kislov, E.V. and Konnokov, E.G. (1995) PGE-Bearing Anorthosites of the Ioko-Dovyren Layered Massif, Northern Transbaikalia, Russia. In: Pasava, J., Kríbek, B. and Zák, K., Eds., Mineral Deposits: From Their Origin to Their Environmental Impacts, A. A. Balkema, Rotterdam, The Netherlands, 181-182.
[182] Oktyabrsky, R.A., Solyanik, A.N., Lennikov, A.M., Gvozdev, V.I. and Ivanov, V.V. (2010) Compositional Variations in Platinum-Group Minerals and Gold in Lenses of Massive Pyrrhotite in the Dzhugdzhur Anorthosite, Far-Eastern Russia. Canad. Mineralogist, 48, 991-1004.
https://doi.org/10.3749/canmin.48.4.991
[183] Latypov, R.M., Chistyakova, S.Yu. and Alapieti, T.T. (2008) PGE Reefs as an In Situ Crystallization Phenomenon: The Nadezhda Gabbronorite Body, Lukkulaisvaara Layered Intrusion, Fennoscandian Shield, Russia. Mineralogy and Petrology, 92, 211-242.
https://doi.org/10.1007/s00710-007-0189-1
[184] Dora, M.L., Nair, K.K.K. and Shasidharan, K. (2011) Occurrence of Platinum Group Minerals in the Western Bastar Craton, Chandrapur District, Maharashtra. Current Science, 100, 399-405.
[185] Karazinov, N.V. (2005) Decriptometric Signs of presence Platinoid-Bearing Autonomous Anorthosites on Example of Geransky Massif (Far East). Proceedings of 9th International Scientific Symposium, Tomsk Polytechncal University, Tomsk, Russia. (In Russian)
[186] Collins, P.G. and Wilton, D.H.C. (2005) Evaluation and Characterization of the Ni-Cu Sulfide and PGE Potential in Three Mafic-Ultramafic Intrusive Complexes: Preliminary Results. Current Research, Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 05-1, 131-149.
[187] Pilchin, A.N. (2014) The Involvement of Forsterite and Dunite Layers of the Oceanic Lithosphere in Obduction during Formation of the Appalachians. Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, Fredericton, 37, 223-224.
[188] Cawthorn, R.G. and Ashwal, L.D. (2009) Origin of Anorthosite and Magnetitite Layers in the Bushveld Complex, Constrained by Major Element Compositions of Plagioclase. Journal of Petrology, 50, 1607-1637.
https://doi.org/10.1093/petrology/egp042
[189] Severson, M.J. and Hauck, S.A. (2003) Platinum Group Elements (PGEs) and Platinum Group Minerals (PGMs) in the Duluth Complex. Minerals Coordinating Committee and the Natural Resources Research Inst. Technical Report NRRI/TR- 2003/37.
[190] Marma, J.C. (2002) Magmatic and Hydrothermal PGE Mineralization of the Birch Lake Cu-Ni-PGE Deposit in the South Kawishiwi Iutrusion, Duluth Complex, Northeast Minnesota. M.Sci. Thesis, University of Wisconsin, USA.
[191] Ghisler, M. (1976) The Geology, Mineralogy and Geochemistry of the Pre-Orogenic Archean Stratiform Chromite Deposits at Fiskenæsset, West Greenland. Monog. Series on Mineral Deposits, 14.
[192] Polat, A., Fryer, B.J., Appel, P.W.U., Kalvig, P., Kerrich, R., Dilek, Y. and Yang, Z. (2011) Geochemistry of Anorthositic Differentiated Sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for Parental Magma Compositions, Geodynamic Setting, and Secular Heat Flow in Arcs. Lithos, 123, 50-72.
https://doi.org/10.1016/j.lithos.2010.12.003
[193] Mukherjee, R., Mondal, S.K., Frei, R., Rosing, M.T., Waight, T.E., Zhong, H. and Kumar, G.R.R. (2012) The 3.1 Ga Nuggihalli Chromite Deposits, Western Dharwar craton (India): Geochemical and Isotopic Constraints on Mantle Sources, Crustal Evolution and Implications for Supercontinent Formation and Ore Mineralization. Lithos, 155, 392-409.
https://doi.org/10.1016/j.lithos.2012.10.001
[194] Puchtel, I.S. and Humayun, M. (2001) Platinum Group Element Fractionation in a Komatiitic Basalt Lava Lake. Geochimica et Cosmochimica Acta, 65, 2979-2993.
https://doi.org/10.1016/S0016-7037(01)00642-1
[195] Stephen, R., Sparks, J. and Huppert, H.E. (1984) Density Changes during the Fractional Crystallization of Basaltic Magmas: Fluid Dynamic Implications. Contributions to Mineralogy and Petrology, 85, 300-309.
https://doi.org/10.1007/BF00378108
[196] Eales, H.V., Field, M., De Klerk, W.J. and Scoon, R. N. (1988) Regional Trends of Chemical Variation and Thermal Erosion in the Upper Critical Zone, Western Bushveld Complex. Mineralogical Magazine, 52, 63-79.
https://doi.org/10.1180/minmag.1988.052.364.06
[197] Latypov, R.M., Chistyakova, S.Yu. and Alapieti, T.T. (2008) Fine-Grained Mafic Bodies as Preserved Portions of Magma Replenishing Layered Intrusions: The Nadezhda Gabbronorite body, Lukkulaisvaara Intrusion, Fennoscandian Shield, Russia. Mineralogy and Petrology, 92, 165-209.
https://doi.org/10.1007/s00710-007-0190-8
[198] Papike, J., Ryder, G. and Shearer, Ch. (1998) Lunar Samples. Reviews in Mineralogy and Geochemistry, 36, 5.1-5.234.
[199] Czamanske, G.K. and Bohlen, S.R. (1990) The Stillwater Complex and Its Anorthosites: An Accident of Magmatic Underplating. American Mineralogist, 75, 37-45.
[200] Blatt, H. and Tracy, R.J. (1996) Petrology: Igneous, Sedimentary and Metamorphic. 2nd Edition, Macmillan, USA.
[201] Mottana, A., Crespi, R. and Liborio, G. (1977) Guide to Rocks and Minerals. Simon & Schuster Inc., New York.
[202] Boudreau, A.E. and McCallum, I.S. (1984) The Picket Pin Pt/Pd Zone, Stillwater Complex, Montana. Lunar and Planetary Science, XV, 78-79.
[203] Mitchell, A.A. and Manthree, R. (2002) The Giant Mottled Anorthosite: A Transitional Sequence at the Top of the Upper Critical Zone of the Bushveld Complex. South African Journal of Geology, 105, 15-24.
https://doi.org/10.2113/1050015
[204] Kruger, F.J. (2010) The Merensky and Bastard Cyclic Units and the Platreef of the Bushveld Complex: Consequences of Main Zone Magma Influxes and Dynamics. Transactions of the 4th International Platinum Conference, Platinum in Transition 'Boom or Bust', The South African Institute of Mining and Metallurgy, 43-46.
[205] Weiblen, P.W. and Morey, G.B. (1980) A Summary of the Stratigraphy, Petrology, and Structure of the Duluth Complex. American Journal of Science, 280-A, 88-133.
[206] Scoon, R.N. and Mitchell, A.A. (2004) The Platiniferous Dunite Pipes in the Eastern Limb of the Bushveld Complex: Review and Comparison with Unmineralized Discordant Ultramafic Bodies. South African Journal of Geology, 107, 505-520.
https://doi.org/10.2113/gssajg.107.4.505
[207] Scoon, R.N. and Mitchell, A.A. (2011) The Principal Geological Features of the Mooihoek Platiniferrous Dunite Pipe, Eastern Limb of the Bushveld Complex, and Similarities with Replaced Merensky Reef at the Amandelbult Mine, South Africa. South African Journal of Geology, 114, 15-40.
https://doi.org/10.2113/gssajg.114.1.15
[208] Scoon, R.N. and Mitchell, A.A. (2010) The Principal Geological Features of the Onverwacht Platiniferrous Dunite Pipe, Eastern Limb of the Bushveld Complex. South African Journal of Geology, 113, 155-168.
https://doi.org/10.2113/gssajg.113.2.155
[209] Barnes, S.J. (1998) Chromite in Komatiites, 1. Magmatic Controls on Crystallization and Composition. Journal of Petrology, 39, 1689-1720.
https://doi.org/10.1093/petroj/39.10.1689
[210] Cotterill, P. (1969) The Chromite Deposits of Selukwe, Rhodesia. Transactions of Symposium on Magmatic Ore Deposits. Society of Economic Geologists. Monograph, 4, 154-186.
[211] Cotterill, P. (1979) The Selukwe Schist BELT and Its Chromitite Deposits. Geological Society of South Africa Special Publication, 5, 229-245.
[212] Hudgins, J.A., Walton, E.L. and Spray, J.G. (2007) Mineralogy, Petrology, and Shock History of Lunar Meteorite Sayh al Uhaymir 300: A Crystalline Impact-Melt breccia. Meteoritics & Planetary Science, 42, 1763-1779.
https://doi.org/10.1111/j.1945-5100.2007.tb00536.x
[213] Scarfe, Ch.M., Cronin, D.J., Wenzel, J.T. and Kauffman, D.A. (1983) Viscosity- Temperature Relationships at I atm in the System Diopside-Anorthite. American Mineralogist, 6E, 1083-1088.
[214] Williams-Jones, A.E. and Heinrich, Ch.A. (2005) Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100, 1287-1312.
https://doi.org/10.2113/gsecongeo.100.7.1287
[215] Cawthorn, R.G. (2005) Stratiform Platinum-Group Element Deposits in Layered Intrusions. In: Mungall, J.E., Ed., Exploration for Platinum-Group Elements Deposits, Mineralogical Association of Canada, Short Course Series, 35, 57-73.
[216] Iljina, M.J. and Lee, C.A. (2005) Chapter 4: PGE Deposits in the Marginal Series of Layered Intrusions. In: Mungall, J.E., Ed., Exploration for Platinum-Group Element Deposits, Ottawa, Mineralogical Association of Canada Short Course Series, 35, 75- 96.
[217] Starostin, V.I. and Sorokhtin, O.G. (2011) A New Interpretation for the Origin of the Norilsk Type PGE-Cu-Ni Sulfide Deposits. Geoscience Frontiers, 2, 583-591.
https://doi.org/10.1016/j.gsf.2011.09.005
[218] Taylor Jr., H.P. (1967) The Zoned Ultramaphic Complexes of Southern Alaska. In: Wyllie, P.J., Ed., Ultramafic and Related Rocks, John Wiley & Sons, New York, 97-121.
[219] Tolstykh, N.D., Sidorov, E.G. and Krivenko, A.P. (2005) Platinum-Group Element Placers Associated with Ural-Alaska Type Complexes. In: Mungall, J.E., Ed., Exploration for Platinum-Group Elements Deposits, Mineralogical Association of Canada Short Course Series, 35, 113-143.
[220] Wilde, A. (2005) Descriptive Ore Deposit Models: Hydrothermal and Supergene Pt & Pd Deposits. In: Mungall, J.E., Ed., Exploration for Platinum-Group Elements Deposits, Mineralogical Association of Canada, Short Course Series, 35, 145-161.
[221] Melcher, F., Lodziak, J. and Oberthur, T. (2005) Modifications of Detrital PGM from the Eastern Bushveld Complex, South Africa. In: Törmänen, T.O. and Alapieti, T.T., Eds., Transactions of the 10th International Platinum Symposium, 201-204.
[222] Wilson, A.H. (1996) The Great Dyke of Zimbabwe. In: Cawthorn, R.G., Ed., Layered Intrusions, Elsevier, 365-402.
https://doi.org/10.1016/S0167-2894(96)80013-3
[223] Li, C. and Ripley, E.M. (2006) Formations of Pt-Fe Alloy by Desulfurization of Pt-Pd Sulfide in the J-M Reef of the Stillwater Complex, Montana. Canadian Mineralogist, 44, 895-903.
https://doi.org/10.2113/gscanmin.44.4.895
[224] Weiblen, P.W. and Morey, G.B. (1976) Textural and Compositional Characteristics of Sulfide Ores from the Basal Contact Zone of the South Kawiskiwi Intrusion, Duluth Complex, Northeastern Minnesota. Transactions of the 37th Annual Mining Symposium, Minnesota Geological Survey, Minnesota University, Reprint No. 32.
[225] Watkinson, D.H. and Dunning, G. (1979) Geology and Platinum-Group Mineralization, Lac-Des-Iles Complex, Northwestern Ontario. Canadian Mineralogist, 17, 453-462.
[226] Sobolev, P.O. (1990) Orientation of Acicular Iron-Ore Mineral Inclusions in Plagioclase. Intern. Geology Review, 32, 616-628.
https://doi.org/10.1080/00206819009465804
[227] McKelson, J.F., Thalhammer, O.A.R. and Paliulionyte, V. (2005) The Dunite Complex of the Guli Massif, Northern Siberia, Russia: A Multidisciplinary Study. In: Törmänen, T.O. and Alapieti, T.T., Eds., Transactions of the 10th International Platinum Symposium, Extended Abstracts, 197-200.
[228] Varlakov, A.S. (1995) Riftogenic Ophiolites, Metamorphism of Hyperbasites and Structure of Vishnevogorsk-Il’menogorsky Complex. Institute of Mineralogy, The Urals Branch of the Russian Academy of Sciences. (In Russian)
[229] Varlakov, A.S. (1996) Riftogenic Ophiolites in Geological Evolution of the Earth. Bulletin of the Moscow Society of Nature Investigators, Series: Geology, 71, 19-30.
[230] Pilchin, A.N. (1986) On the Role of Pressures in Tectonic Processes. VINITI Press, Russian Academy of Sciences, No. 3723-86, 1-23.
[231] Pilchin, A.N. and Eppelbaum, L.V. (2002) Some Peculiarities of Thermodynamic Conditions of the Earth Crust and Upper Mantle. Scientific Israel, 4, 117-142.
[232] Peck, D.C. and Theyer, P. (1998) PGE-Copper-Nickel Potential of Mafic-Ultramafic Intrusions in the Bird River Greenstone Belt (Parts of NTS 52L). Manitoba Energy and Mines, Geological Services, Report of Activities, 151-160.
[233] Cameron, E.N. (1980) Evolution of the Lower Critical Zone, Central Sector, Eastern Bushveld Complex, and Its Chromite Deposits. Economic Geology, 75, 845-871.
https://doi.org/10.2113/gsecongeo.75.6.845
[234] Hatton, C.J. and von Gruenewaldt, G. (1987) The Geological Setting and Petrogenesis of the Bushveld Chromitite Layers. In: Stowe, C.W., Ed., Evolution of Chromium Ore Fields. N. Y. Van Nostrand Reinhold, 109-143.
[235] Mondal, S.K. and Mathez, E.A. (2007) Origin of the UG2 Chromitite Layer, Bushveld Complex. Journal of Petrology, 48, 495-510.
https://doi.org/10.1093/petrology/egl069
[236] Pilchin, A. and Pilchin, M. (2014) Repeating Obduction in the Process of Forming the Canadian Appalachians. Transactions of Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, Frederiction, 37, 222- 223.
[237] Pilchin, A.N. (1996) Tectonic and Petrologic Peculiarities of the Precambrian Evolution of the Baltic Shield. Transactions of the 58th Conference of European Association of Geophysicists and Engineers, Amsterdam, The Netherlands, 513.
[238] Pilchin, M., and Pilchin, A. (1998) Some Peculiarities of Ocean Crust Activity in the Appalachian Region. Transactions of Geological Society of America Annual Meeting, Toronto, A-352.
[239] Hughes, S. and Luetgert, J. H. (1992) Crustal Structure of the Southeastern Grenville Province Northern New York State and Eastern Ontario. Journal of Geophysical Research, 97, 17455-17479.
https://doi.org/10.1029/92JB01793
[240] Ebel, J.E. (2010) Resolving Lateral Variations in Upper Mantle Structure of Eastern North America: An Opportunity for USARRAY. Transactions of the 82th Annual Meeting of the Eastern Section of the Seismological Society of America, Boston, 18-19 October 2010, 18.
[241] Németh, B., Clowes, R.M. and Hajnal, Z. (2005) Lithospheric Structure of the Trans-Hudson Orogen from Seismic Refraction-Wide-Angle Reflection Studies. Canadian Journal of Earth Sciences, 42, 435-456.
https://doi.org/10.1139/e05-032
[242] Prodehl, C. and Mooney, W.D. (2012) Exploring the Earth's Crust: History and Results of Controlled-Source Seismology. The Geological Society of America, Memoir 208.
[243] Keen, M.J., Loncarevic, B.D. and Ewing, G.N. (2005) Continental Margin of Eastern Canada: Georges Bank to Kane Basin. In: Maxwell, A.E., Bullard, E. and Worzel, J.L., Eds., New Concepts of Sea Floor Evolution: Regional Observations Concepts, Harvard University Press, Ch. 7, 251-292.
[244] Dainty, A.M., Keen, C.E., Keen, M.J. and Blanchard, J.E. (1966) Review of Geophysical Evidence on Crust and Upper-Mantle Structure on the Eastern Seaboard of Canada. In: Steinhart, J.S. and Smith, T.J., Eds., The Earth Beneath the Continents, A Volume of Geophysical Studies in Honor of Merle A. Tuve, AGU, Geophys. Monogr. Ser., Washington, D. C., 10, 349-369.
[245] Rankin, D.S., Ravindra, R. and Zwicker, D. (1969) Preliminary Interpretation of the First Arrival Refraction Arrivals in Gaspé from Shots in Labrador and Quebec. Canadian Journal of Earth Sciences, 6, 771-774.
https://doi.org/10.1139/e69-071
[246] Hughes, S., Hall, J. and Luetgert, J.H. (1994) The Seismic Velocity Structure of the Newfoundland Appalachian Orogen. Journal of Geophys. Research: Solid Earth, 99, 13633-13653.
https://doi.org/10.1029/94JB00653
[247] Chian, D., Marillier, F., Hall, J. and Quinlan, G. (1998) An Improved Velocity Model for the Crust and Upper Mantle along the Central Mobile Belt of the Newfoundland Appalachian Orogen and Its Offshore Extension. Canadian Journal of Earth Sciences, 35, 1238-1251.
https://doi.org/10.1139/e98-042
[248] Max, M.D. and Ohta, Y. (1988) Did Major Fractures in Continental Crust Control Orientation of the Knipovich Ridge—Lena Trough Segment of the Plate Margin? Polar Research, 6, 85-93.
https://doi.org/10.3402/polar.v6i1.6848
[249] Mjelde, R., Goncharov, A. and Dietmar Müller, R. (2013) The Moho: Boundary above Upper Mantle Peridotites or Lower Crustal Eclogites? A Global Review and New Interpretations for Passive Margins. Tectonophysics, 609, 636-650.
https://doi.org/10.1016/j.tecto.2012.03.001
[250] Van Avendonk, H.J.A., Holbrook, W.S., Okaya, D., Austin, J.K., Davey, F. and Stern, T. (2004) Continental Crust under Compression: A Seismic Refraction Study of South Island Geophysical Transect I, South Island, New Zealand. Journal of Geophys. Research, 109, B06302.
https://doi.org/10.1029/2003jb002790
[251] Kostyuchenko, S.L., Fedorow, D.L., Solodilov, L.N., Egorkin, A.V. and Zolotov, E.E. (1999) Deep Structure and Evolution for the Pre-Caspian Basin. Transactions of the EUG, 10, Strasbourg, France, 4, G01, 3A/14, G3.
[252] Piip, V.B., Rodnikov, A.G. and Buvaev, N.A. (2012) The Deep Structure of the Lithosphere along the Caucasus—South Caspian Basin—Absheron Threshold—Mid- dle Caspian Basin—Turan Plate Seismic Profile. Moscow University Geology Bulletin, 67, 125-132.
https://doi.org/10.3103/S0145875212020068
[253] De Souza, S., Tremblay, A., Ruffet, G. and Pinet, N. (2012) Ophiolite Obduction in the Quebec Appalachians, Canada—40Ar/39Ar Age Constraints and Evidence for Syn-Tectonic Erosion and Sedimentation. Canadian Journal of Earth Sciences, 49, 91-110.
https://doi.org/10.1139/e11-037
[254] Hannan, B.B. and Sinha, A.K. (1989) Petrology and Tectonic Affinity of the Baltimore Mafic Complex, Maryland. In: Mittwede, S.K. and Stoddard, E.F., Eds., Ultramafic Rocks of the Appalachian Piedmont. Geological Society of America Special Paper 231, 1-18.
https://doi.org/10.1130/SPE231-p1
[255] Laurent, R. and Hébert, Y. (1979) Paragenesis of Serpentine Assemblages in Harzburgite Tectonite and Dunite Cumulate from the Quebec Appalachians. Canadian Mineralogist, 17, 857-869.
[256] Condie, K.C. and Madison, J.A. (1969) Compositional and Volume Changes Accompanying Progressive Serpentinization of Dunites from the Webster-Addie Ultramafic Body, North Carolina. American Mineralogist, 51, 1173-1179.
[257] Minarik, W.G., Gale, A. and Booker, C. (2003) Mont Albert to Buck Mountain: Provenance of Appalachian Ophiolite Chromites Using Osmium Isotopes. Transactions of the American Geophysical Union Fall Meeting, Abstract #V11E-0534.
[258] Salisbury, M.H. and Christensen, N.I. (1985) Olivine Fabrics in the Bay of Islands Ophiolite: Implications for Oceanic Mantle Structure and Anisotropy. Canadian Journal of Earth Sciences, 22, 1757-1766.
https://doi.org/10.1139/e85-186
[259] Paiement, J.-Ph., Gagne, J., Duplessis, C., Rousseau, G., Gagnon, G. and Dagbert, M. (2013) Pre-Feasibility Study Mine Arnaud Inc. Sept-Iles Deposit, Québec. Final Report. SGS Canada Inc.
[260] Page, P., Bedard, J.H., Tremblay, A. and Schroetter, J. (2003) The Thetford Mines Ophiolite Complex: Focus on the Petrology, Mineralogy and Geochemistry (REE, PGE) of a Supra-Subduction Mantle Section. Transactions of the American Geophysical Union, Fall Meeting, Abstract #V22H-01.
[261] Scott, P.W., Jackson, T.A. and Dunham, A.C. (2000) Ore Mineral Associations and Industrial Minerals in the Ultramafic Rocks of Jamaica and Tobago. Caribbean Journal of Earth Science, 34, 5-16.
[262] Sole, J.P.J. and Melgarejo, J.C. (1999) Uvarovite in Podiform Chromitite: The Moa-Baracoa Ophiolitic Massif, Cuba. Canadian Mineralogist, 37, 679-690.
[263] Brem, A.G., Lin, S. and van Staal, C.R. (2002) Humber Zone—Dunnage Zone Relationships and the Long Range Fault, South of Grand Lake, Western Newfoundland: Preliminary Results. In: Current Research. Newfoundland and Labrador Department of Mines and Energy, Geological Survey Branch, Report: 02-1, 135-144.
[264] Pettingill, H.S., Sinha, A. K. and Tatsumoto, M. (1984) Age and Origin of anorthosites, Charnockites, and Granulites in the Central Virginia Blue Ridge: Nd and Sr Isotopic Evidence. Contributions to Mineralogy and Petrology, 85, 279-291.
https://doi.org/10.1007/BF00378106
[265] Murthy, G.S. and Rao, K.V. (1976) Paleomagnetism of Steel Mountain and Indian Head Anorthosites from Western Newfoundland. Canadian Journal of Earth Sciences, 13, 75-83.
https://doi.org/10.1139/e76-007
[266] Haworth, R.T. (1978) Interpretation of Geophysical Data in the Northern Gulf of St. Lawrence and Its Relevance to Lower Paleozoic Geology. Geological Society of America Bulletin, 89, 1091-1110.
https://doi.org/10.1130/0016-7606(1978)89<1091:IOGDIT>2.0.CO;2
[267] Rao, K.V. and Van der Voo, R. (1980) Paleomagnetism of a Paleozoic Anorthosite from the Appalachian Piedmont, Northern Delaware: Possible Tectonic Implications. Earth and Planetary Science Letters, 47, 113-120.
https://doi.org/10.1016/0012-821X(80)90109-0
[268] McLelland, J.M., Selleck, B.W., Hamilton, M.A. and Bickford, M.E. (2010) Late-to Post-Tectonic Setting of Some Major Proterozoic Anorthosite—Mangerite— Charnockite—Granite (AMCG) Suites. Canadian Mineralogist, 48, 1025-1046.
https://doi.org/10.3749/canmin.48.4.729
[269] Aleinikoff, J.N., Horton Jr., J.W. and Walter, M. (1996) Middle Proterozoic Age for the Montpelier Anorthosite, Goochland Terrane, Eastern Piedmont, Virginia. Geological Society of America Bulletin, 108, 1481-1491.
https://doi.org/10.1130/0016-7606(1996)108<1481:MPAFTM>2.3.CO;2
[270] Crawford, W.A., Robelen, P.G. and Kalmbach, J.H. (1971) The Honey Brook Anorthosite. American Journal of Science, 271, 333-349.
https://doi.org/10.2475/ajs.271.4.333
[271] Owens, B.E., Iriarte, K.E. and Dymek, R.F. (2004) The Smallest, but Most Potassic Massif Anorthosite on Earth: Geochemistry of the Montpalier Pluton, Goochland Terrane, Virginia. Geological Society of America, Denver Annual Meet. Abstracts with Programs, 36, 220.
[272] John, J.St. (2012) Rocks from Ophiolites.
http://www.newark.osu.edu/facultystaff/personal/jstjohn/Documents/Cool-Rocks/Ophiolite-rocks.htm
[273] Barnes, S. and Jones, S. (2013) Deformed Chromitite Layers in the Coobina Intrusion, Pilbara Craton, Western Australia. Economic Geology, 108, 337-354.
https://doi.org/10.2113/econgeo.108.2.337
[274] Hutcinson, Ch.S. (1972) Alpine-Type Chromite in North Borneo, with Special Reference to Darvel Bay. American Mineralogist, 57, 835-856.
[275] Page, P., Barnes, S.J. and Cox, R. (2007) Laser Ablation Study of Trace Elements in Chromite: Thetford Mines Ophiolite Chromitite Ores. Geochimica et Cosmochimica Acta, 71, A748-A748.
[276] Tsoupas, G. and Economou-Eliopulos, M. (2008) High PGE Contents and Extremely Abundant PGE-Minerals Hosted in Chromitites from the Veria Ophiolite Complex, Northern Greece. Ore Geology Reviews, 33, 3-19.
https://doi.org/10.1016/j.oregeorev.2006.10.008
[277] Ahmed, A.H. and Arai, S. (2003) Platinum-Group Elements Mineralogy of Late Proterozoic Podiform Chromitites from the Eastern Desert of Egypt: A Preliminary Result. Proceed. of 7th Biennial SGA Meeting, Athens, Greece. In: Eliopoulos, et al., Eds., Mineral Exploration and Sustainable Development, Millpress, Rotterdam, 555-558.
[278] Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B. and Hatzipanagiotou, K. (2009b) Platinum-Group Mineral Characterization in Concentrates from High- Grade PGE Al-Rich Chromitites of Korydallos Area in the Pindos Ophiolite Complex (NW Greece) Resource Geology, 60, 178-191.
https://doi.org/10.1111/j.1751-3928.2010.00124.x
[279] Zaccarini, F., Garuti, G. and Pushkarev, E.V. (2011) Unusually PGE-Rich Chromitite in the Butyrin Vein of the Kytlym Uralian–Alaskan Complex, Northern Urals, Russia. Canadian Mineralogist, 49, 1413-1431.
https://doi.org/10.3749/canmin.49.6.1413
[280] Zaccarini, F., Pushkarev, E.V., Fershtater, G.B. and Garuti, G. (2004) Composition and Mineralogy of PGE-Rich Chromitites in the Nurali Lherzolite-Gabbro Complex, Southern Urals, Russia. Canadian Mineralogist, 42, 545-562.
https://doi.org/10.2113/gscanmin.42.2.545
[281] González-Jiménez, J.M., Augé, T., Gervilla, F., Bailly, L., A. Proenza, J. and Griffin, W.L. (2011) Mineralogy and Geochemistry of Platinum-Rich Chromitites from the Mantle-Crust Transition Zone at Quin Island, New Caledonia Ophiolite. Canad. Mineralogist, 49, 1549-1569.
https://doi.org/10.3749/canmin.49.6.1549
[282] Prichard, H.M., Neary, C.R., Fisher, P.C. and O’Hara, M.J. (2008) PGE-Rich Podiform Chromitites in the Al’Ays Ophiolite Complex, Saudi Arabia: An Example of Critical Mantle Melting to Extract and Concentrate PGE. Economic Geology, 103, 1507-1529.
https://doi.org/10.2113/gsecongeo.103.7.1507
[283] Çina, A., Neziraj, A., Karaj, N., Johan, Z. and Ohnenstetter, M. (2002) PGE Mineralization Related to Albanian Ophiolitic Complex. Geologica Carpathica, 53, 1-7.
[284] Routledge, R.E., Cox, J.J., Scott, K.C. and Hwozdyk, L.R. (2010) Technical Report on the Lac Des Iles Mine Property. Thunder Bay, Ontario, Canada. NI 43-101 Report.
[285] Prichard, H.M., Fisher, P.C., McDonald, I., Zhou, M.-F. and Wang, C.Y. (2005) Platinum-Group Minerals in the Jinchuan Complex, China. In: Törmänen, T.O. and Alapieti, T.T., Eds., Transactions of the 10th International Platinum Symposium, 219-222.
[286] Smith II, R.C. and Barnes, J.H. (2011) Geochemistry and Mineralogy of Platinum Group Elements in Some Chromite Occurrences in the State Line District, Chester and Lancaster Counties, Pennsylvania. Pennsylvania Geology, 41, 3-13.
[287] Gervilla, F., Frei, R., González-Jiménez, J.M., Garrido, C.J., Proenza, J., Melgarejo, J.C., Meibom, A., Batista, J.A. and Ruiz, R. (2005) Platinum-Group Elements and Os Isotope Systematics in Chromite Ores from Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba). Transactions of the 10th International Platinum Symposium, Oulu, Finland, 86-89.
[288] Foley, J.Y. (1991) Metallogeny of Ophiolitic and Other Mafic-Ultramafic Terranes in Alaska. US Department of the Interior, Geological Survey. US Bureau of Mines Unpublished Report.
[289] Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B., Hatzipanagiotou, K., Zaccarini, F. and Garuti, G. (2009a) Chromian Spinel Composition and Platinum-Group Element Mineralogy of Chromitites from the Milia Area, Pindos Ophiolite Complex, Greece. Canadian Mineralogist, 47, 1037-1056.
https://doi.org/10.3749/canmin.47.5.1037
[290] Gervilla, F., Frei, R., González-Jiménez, J.M., Kerestedjian, T. and Glavev, B. (2008) Geochemistry of platinum Group Elements in Chromitites from the Rhodope Massif (Bulgaria). Revista de la Sociedad Española de Mineralogía, No. 9, 115-116.
[291] Volchenko, Yu.A., Koroteev, V.A. and Neustroeva, I.I. (2009) Platinum-Group Elements in Alpine-Type Ultramafic Rocks and Related Chromite Ores of the Main Ophiolite Belt of the Urals. Geology of Ore Deposits, 51, 162-178.
https://doi.org/10.1134/S1075701509020068
[292] Gurskaya, L.I., Smelova, L.V. and Shahova, S.N. (2005) PGE Mineralization Associated with Ultramafic Intrusions of the Polar Urals: New Data to Beneficiation. In: Törmänen, T.O. and Alapeiti, T.T., Eds., Trans. of the 10th Intern. Plat. Symp. "Platinum-Group Elements—From Genesis to Beneficiation and Environmental Impact", Finland, 359-361.
[293] Uysal, I., Sadiklar, M.B., Zaccarini, F., Garuti, G., Tarkian, M. and Meisel, T. (2010) Cr-PGE Mineralization in the Turkish Ophiolites. Transactions of the State of Art, 11th International Platinum Symposium, 1-3.
[294] Uysal, I., Zaccarini, F., Sadiklar, M.B., Tarkian, M., Thalhammer, O.A.R. and Garuti, G. (2009) The Podiform Chromitites in the Dagküplü and Kavak Mines, Eskisehir Ophiolite (NW-Turkey): Genetic Implications of Mineralogical and Geochemical data. Geologica Acta, 7, 351-362.
[295] Proenza, J.A., Zaccarini, F., Lewis, J.F., Longo, F. and Garuti, G. (2007) Chromian Spinel Composition and the Platinum-Group Minerals of the PGE-Rich Loma Peguera Chromitites, Loma Caribe Peridotite, Dominican Republic. Canadian Mineralogist, 45, 631-648.
https://doi.org/10.2113/gscanmin.45.3.631
[296] Jowitt, S.M., Keays, R.R. and Peck, D.C. (2010) New Insights into the Geology and Mineral Potential of the West Raglan Ni-Cu-PGE Project, Cape Smith Fold Belt, Ontario Geological Survey, Miscellaneous Release-Data.
[297] Paktunc, A.D. (1990) Comparative Geochemistry of platinum-Group Elements of Nickel-Copper Sulfide Occurrences Associated with Mafic-Ultramafic Intrusions in the Appalachian Orogen. Journal of Geochemical Exploration, 37, 101-111.
https://doi.org/10.1016/0375-6742(90)90085-O
[298] Tanguay, S. and Hebert, R. (1990) Distribution of PGE in Pyroxene-Bearing Ultramafic Cumulates in the Thetford Mines ophiolitic Complex, Quebec. Canadian Mineralogist, 28, 597-605.
[299] Papunen, H., Distler, V. and Sokolov, A. (1992) PGE in the Upper Proterozoic Dovirensky Layered Complex, North Baikal Area, Siberia. Australian Journal of Earth Sciences, 39, 327-334.
https://doi.org/10.1080/08120099208728027
[300] Lipin, B.R. (1984) Chromite from the Blue Ridge Province of North Carolina. Amer. Journal of Science, 284, 507-529.
https://doi.org/10.2475/ajs.284.4-5.507
[301] Lasley, S. (2012) From Placer Streams to Historical Mines, Hints of Elusive Metal span Alaska. Petroleum News, Newspaper, Anchorage, Alaska.
[302] Sahoo, R.K., Mohanty, J.K., Das, S.K. and Paul, A.K. (2009) Chromites of India Their Textural and Mineralogical Characteristics. ISMO-2009. Transactions of the International Symposium on Magmatic Ore Deposits. Bhubaneswar, Orissa, India.
[303] Mondal, S.K. and Baidya, T.K. (1997) Platinum-Group Minerals from the Nuasahi Ultramafic-Mafic Complex, Orissa, India. Mineralogical Magazine, 61, 902-906.
https://doi.org/10.1180/minmag.1997.061.409.13
[304] Endress, M. and Bischoff, A. (1993) Mineralogy, Degree of Brecciation, and Aqueous Alteration of CI Chondrites Orgueil, Ivuna, and Alais. Meteoritics, 28, 345-346.
[305] Brearley, A.J. (1992) Mineralogy of Fine-Grained Matrix in the Ivuna CI Carbonaceous Chondrite. Lunar and Planetary Science, 23, 153-154.
[306] Johnson, C.A. and Prinz, M. (1991) Chromite and Olivine in Type II Chondrules in Carbonaceous and Ordinary Chondrites: Implications for Thermal Histories and Group Differences. Geochimica et Cosmochimica Acta, 55, 893-904.
https://doi.org/10.1016/0016-7037(91)90349-A
[307] Buseck, P.R. and Hua, X. (1993) Matrices of Carbonaceous chondrite Meteorites. Annual Review of Earth and Planetary Sciences, 21, 255-305.
https://doi.org/10.1146/annurev.ea.21.050193.001351
[308] Shukolyukov, A., Lugmair, G.W. and Bogdanovski, O. (2003) Manganese-Chro- mium Isotope Systematics of Ivuna, Kainsaz and Other Carbonaceous Chondrites. Lunar and Planetary Science, XXXIV, Abstract 1279.
[309] Cloutisa, E.A., Hiroi, T., Gaffey, M.J. and Alexander, C.M. O’D. and Mann, P. (2011) Spectral Reflectance Properties of Carbonaceous Chondrites: 1. CI Chondrites. Icarus, 212, 180-209.
https://doi.org/10.1016/j.icarus.2010.12.009
[310] Visa, R.D. and Heymann, D. (1999) On the Q-Phase of Carbonaceous Chondrites. Nuclear Instruments and Methods in Physics Research B, 158, 538-543.
https://doi.org/10.1016/S0168-583X(99)00512-1
[311] Ivanova, M.A., Taylor, L.A., Clayton, R.N., Mayeda, T.K., Nazarov, M.A., Brandstätter, F. and Kurat, G. (2002) Dho 225 vs. the CM Clan: Metamorphosed or New Type of Carbonaceous Chondrite. 33rd Lunar and Planetary Science Conferences, Abstract #1437. CD-ROM.
[312] Riebe, M. (2009) Spinel Group Minerals in Carbonaceous and Ordinary Chondrites. BA Thesis, Lunds University, No. 250.
[313] Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier, Amsterdam.
[314] Bridges, J.C., Schmitz, B., Huchison, R., Greenwood, R.C., Tassinari, M. and Franchi, I.A. (2007) Petrographic Classification of Middle Ordovician Fossil Meteorites from Sweden. Meteoritics and Planetary Science, 42, 1781-1789.
https://doi.org/10.1111/j.1945-5100.2007.tb00537.x
[315] Göpel, C., Birck, J.-L. and Zanda, B. (2011) Mn/Cr Systematics in Carbonaceous chondrites: Mineral Isochrons versus Stepwise Dissolution. Mineralogical Magazine, 7, A32.
[316] Rubin, A.E. (1997) Mineralogy of Meteorite Groups. Meteoritics & Planetary Science, 32, 231-247.
https://doi.org/10.1111/j.1945-5100.1997.tb01262.x
[317] Wlotzka, F. (2005) Cr Spinel and Chromite as Petrogenetic Indicators in Ordinary Chondrites: Equilibrium Temperatures of Petrologic Types 3.7 to 6. Meteoritics and Planetary Science, 40, 1673-1702.
https://doi.org/10.1111/j.1945-5100.2005.tb00138.x
[318] Khain, V.Ye. (1984) Regional Geotectonics—Alpine Mediterranean Belt. Nedra, Moscow. (In Russian)
[319] Huang, Q.S., Shi, R.D., Liu, D.L., Zhang, X.R., Fan, S.Q. and Ding, L. (2013) Os Isotopic Evidence for a Carbonaceous Chondritic Mantle Source for the Nagqu Ophiolite from Tibet and Its Implications. Chinese Science Bulletin, 58, 92-98.
https://doi.org/10.1007/s11434-012-5384-8
[320] Yang, W., Teng, F.-Zh. and Zhang, H.-F. (2009) Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle: A Case Study of Peridotite Xenoliths from the North China Craton. Earth and Planetary Science Letters, 288, 475-482.
https://doi.org/10.1016/j.epsl.2009.10.009
[321] Büchl, A., Brügmann, G.E., Batanova, V.G. and Hofmann, A.W. (2003) Os Mobilization during Melt Percolation: The Evolution of Os Isotope Heterogeneities in the Mantle Sequence of the Troodos Ophiolite, Cyprus. Geochimica et Cosmochimica Acta, 68, 3397-3408.
https://doi.org/10.1016/j.gca.2004.02.005
[322] Batanova, V.G. and Sobolev, A.V. (2000) Compositional Heterogeneity in Subduction-Related Mantle Peridotites, Troodos massif, Cyprus. Geology, 28, 55-58.
https://doi.org/10.1130/0091-7613(2000)28<55:CHISMP>2.0.CO;2

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.